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Abstract. This paper considers random coefficients binary choice models. The main goal is to

estimate the density of the random coefficients nonparametrically. This is an ill-posed inverse prob-

lem characterized by an integral transform. A new density estimator for the random coefficients is

developed, utilizing Fourier-Laplace series on spheres. This approach offers a clear insight on the

identification problem. More importantly, it leads to a closed form estimator formula that yields a

simple plug-in procedure requiring no numerical optimization. The new estimator, therefore, is easy

to implement in empirical applications, while being flexible about the treatment of unobserved hetero-

geneity. Extensions including treatments of non-random coefficients and models with endogeneity are

discussed.

1. Introduction

Consider a binary choice model

(1.1) Y = I
{
X ′β ≥ 0

}
where I denotes the indicator function and X is a d-vector of covariates. We assume that the first

element of X is 1, therefore the vector X is of the form X = (1, X̃ ′)′. The vector β is random. The

random element (Y, X̃, β) is defined on some probability space (Ω,F ,P), and (yi, x̃i, βi), i = 1, ..., N

denote its realizations. The econometrician observes (yi, x̃i), i = 1, ..., N , but βi, i = 1, ..., N remain
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unobserved. The vectors X̃ and β correspond to observed and unobserved heterogeneity across agents,

respectively. Note that the first element of β in this formulation absorbs the usual scalar stochastic

shock term as well as a constant in a standard binary choice model with non-random coefficients.

This formulation is used in Ichimura and Thompson (1998), and is convenient for the subsequent

development in this paper. Our basic model maintains exogeneity of the covariates X̃ :

Assumption 1.1. β is independent of X̃,

Section 5.3 considers ways to relax this assumption. Under (1.1) and Assumption 1.1, the choice

probability function is given by

r(x) = P(Y = 1|X = x)(1.2)

= Eβ[I {x′β > 0}].

Discrete choice models with random coefficients are useful in applied research since it is often crucial

to incorporate unobserved heterogeneity in modeling the choice behavior of individuals. There is

a vast and active literature on this topic. Recent contributions include Briesch, Chintagunta and

Matzkin (1996), Brownstone and Train (1999), Chesher and Santos Silva (2002), Hess, Bolduc and

Polak (2005), Harding and Hausman (2006), Athey and Imbens (2007), Bajari, Fox and Ryan (2007)

and Train (2003). A common approach in estimating random coefficient discrete choice models is to

impose parametric distributional assumptions. A leading example is the mixed Logit model, which is

discussed in details by Train (2003). If one does not impose a parametric distributional assumption,

the distribution of β itself is the structural parameter of interest. The goal for the econometrician is

then to recover it nonparametrically from the information about r(x) obtained from the data.

Nonparametric treatments for unobserved heterogeneity distributions have been considered in

the literature for other models. Heckman and Singer (1984) study the issue of unobserved heterogene-

ity distributions in duration models and propose a treatment by a nonparametric maximum likelihood

estimator (NPMLE). Elbers and Ridder (1982) also develop some identification results in such models.

Beran and Hall (1992) and Hoderlein et al. (2007) discuss nonparametric estimation of random co-

efficients linear regression models. Despite the tremendous importance of random coefficient discrete

choice models, as exemplified in the above references, nonparametrics in these models is relatively

underdeveloped. In their important paper, Ichimura and Thompson (1998) propose an NPMLE for

the CDF of β. They present sufficient conditions for identification and prove the consistency of the

NPMLE. The NPMLE requires high dimensional numerical maximization and can be computationally
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intensive even for a moderate sample size. Berry and Haile (2008) explore nonparametric identification

problems in a random coefficients multinomial choice model that often arises in empirical IO.

This paper considers nonparametric estimation of the random coefficients distribution, using a

novel approach that shares some similarities with standard deconvolution techniques. This allows us

to reconsider the identifiability of the model and obtain a constructive identification result. Moreover,

we develop a simple plug-in estimator for the density of β that requires no numerical optimization or

integration. It is easy to implement in empirical applications, while being flexible about the treatment

of unobserved heterogeneity.

Since the scale of β is not identified in the binary choice model, we normalize it so that β is a

vector of Euclidean norm 1 in R
d. The vector β then belongs to the d − 1 dimensional sphere S

d−1.

This is not a restriction as long as the probability that β is equal to 0 is 0. Also, since only the angle

between X and β matters in the binary decision I{X ′β ≥ 0}, we can replace X by X/‖X‖ without

any loss of information. We therefore assume that X is on the sphere S
d−1 as well in the subsequent

analysis. Results from the directional data literature are thus relevant to our analysis. We aim to

recover the joint probability density function fβ of β with respect to the uniform spherical measure σ

over Sd−1 from the random sample (y1, x1), . . . , (yN , xN ) of (Y,X).

The problem considered here is a linear ill-posed inverse problem. We can write

(1.3) r(x) =

∫
b∈Sd−1

I
{
x′b ≥ 0

}
fβ(b)dσ(b) =

∫
H(x)

fβ(b)dσ(b) := H (fβ) (x)

where the set H(x) is the hemisphere {b : x′b ≥ 0}. The mapping H is called the hemispherical

transformation. Inversion of this mapping was first studied by Funk (1916) and later by Rubin

(1999). Groemer (1996) also discusses some of its properties. H is not injective without further

restrictions and conditions need to be imposed to ensure identification of fβ from r. Even under a set

of assumptions that guarantees identification, however, the inverse of H is not a continuous mapping,

making the problem ill-posed. In order to overcome this problem, we use a one parameter family

of regularized inverses that are continuous and converge to the inverse when the parameter goes to

infinity. This is a common approach to ill-posed inverse problems in statistics (see, e.g. Carrasco et

al., 2007).

Due to the particular form of its kernel that involves the scalar product x′b, the operator H is

an analogue of convolution in R
d, as illustrated in a simple example in Section A.1.1 of Supplemental

Appendix. This analogy provides a clear insight into the identification issue. In particular, our

problem is closely related to the so-called boxcar deconvolution (see, e.g. Groeneboom and Jongbloed
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(2003) and Johnstone and Raimondo (2004)), where identifiability is often a significant problem. The

connection with deconvolution is also useful in deriving an estimator based on a series expansion on

the Fourier basis on S
1 or its extension to higher dimensional spheres called Fourier-Laplace series.

These bases are defined via the Laplacian on the sphere, and they diagonalize the operator H on

L2
(
S
d−1

)
. Such techniques are used in Healy and Kim (1996) for nonparametric empirical Bayes

estimation in the case of the sphere S
2. The kernel of the integral operator H, however, does not

satisfy the assumptions made by Healy and Kim. Unlike Healy and Kim (1996), we make use of so-

called “condensed” harmonic expansions. The approach replaces a full expansion on a Fourier-Laplace

basis by an expansion in terms of the projections on the finite dimensional eigenspaces of the Laplacian

on the sphere. This is useful since an explicit expression of the kernel of the projector is available.

It enables us to work in any dimension and does not require a parametrization by hyperspherical

coordinates nor the actual knowledge of an orthonormal basis. This approach, to the best of our

knowledge, appears to be new in the econometrics literature.

The paper is organized as follows. Section 2 provides a practical guide for our procedure,

which is easy to implement. Section 3 deals with identification while introducing basic notions used

throughout the paper. We derive the convergence rates of the estimators in all the Lq spaces for q ∈
[1,∞] and also prove a pointwise CLT in Section 4. Some extensions, such as estimation of marginals,

treatments of models with non-random coefficients, and the case with endogenous regressors are

presented in Section 5. Simulation results are reported in Section 6. Section 7 concludes. Supplemental

Appendix presents analysis of a toy model, technical tools used in the main text, estimators for choice

probabilities that are used to construct our density estimators, and the proofs of the main results.

2. A Brief Guide for Practical Implementation

This section presents our basic estimation procedure when a random sample {(yi, x̃i)} generated
from the model (1.1) is available. As noted in Section 1, normalize covariates data and define xi =

(1, x̃′i)/‖(1, x̃′i)‖ ∈ S
d−1, i = 1, ..., N . To estimate the joint density of the random vector β, use the

following formula:

(2.1) f̂β(b) = max

⎛
⎝ 2

|Sd−1|
TN−1∑
p=0

χ(2p + 1, 2TN )h(2p + 1, d)

λ(2p + 1, d)C
ν(d)
2p+1(1)

⎛
⎝ 1

N

N∑
i=1

(2yi − 1)C
ν(d)
2p+1(x

′
ib)

max
(
f̂X(xi),mN

)
⎞
⎠ , 0

⎞
⎠ .

The factors |Sd−1|, χ, h and λ are constants that do not depend on data and trivial to compute.

The surface area
∣∣Sd−1

∣∣ of Sd−1 is given by
∣∣Sd−1

∣∣ = 2πd/2

Γ(d/2) where Γ denotes the Gamma function.
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The constants h, ν and λ are obtained via the numerical formulas h(n, d) = (2n+d−2)(n+d−2)!
n!(d−2)!(n+d−2) , ν(d) =

(d− 2)/2 and λ(2p+1, d) = (−1)p |Sd−2|1·3···(2p−1)
(d−1)(d+1)···(d+2p−1) , respectively. The function χ is defined on N×N and

used for smoothing. This is to be chosen by the user: see Proposition A.3 as well as the numerical

example reported in Section 6 for examples of χ. The truncation parameter TN needs to be chosen

so that it grows with the sample size with a sufficiently slow rate. The trimming factor mN is also

user-defined, and it is chosen so that it goes to zero as the sample size increases. The notation Cν
n(·)

signifies the Gegenbauer polynomial1; They, for example, correspond to the Chebychev polynomials

of the first kind in the case of one random slope (i.e. the case with d = 2)2. The only remaining factor

which needs to be calculated in the above formula is the nonparametric density estimator f̂X for fX

on S
d−1. For example, the following nonparametric estimator can be used:

(2.2) f̂X(x) = max

⎛
⎝ 1

|Sd−1|
T ′
N∑

n=0

χ(n, T ′
N )h(n, d)

C
ν(d)
n (1)

(
1

N

N∑
i=1

Cν(d)
n (x′ix)

)
, 0

⎞
⎠

where T ′
N is an another truncation parameter, playing a role similar to TN .

Our estimator f̂β requires neither numerical integration nor optimization. This is a clear advan-

tage over existing estimators for random coefficient binary choice models, including many parametric

estimators. This is our main proposal, on which the rest of the paper focuses. In Section 4 we explain

how the formula (2.1) is derived, and investigate its asymptotic properties.

3. Identification Analysis

In this section we address the following two questions:

(Q1) Under what conditions is fβ identified?

(Q2) Does the random coefficients model impose restrictions?

1The Gegenbauer polynomials are given by

Cν
n(t) =

[n/2]∑

l=0

(−1)l(ν)n−l

l!(n− 2l)!
(2t)n−2l, ν > −1/2, n ∈ N

where (a)0 = 1 and for n in N \ {0}, (a)n = a(a + 1) · · · (a + n − 1) = Γ(a + n)/Γ(a). See Section A.1.2 for further

properties of the Gegenbauer polynomials.
2When d = 2, the following relations can be used in (2.1) and (2.2)

∀p ≥ 0,
1

|Sd−1|
h(2p+ 1, 2)C0

2p+1(x
′
ib)

λ(2p+ 1, 2)C0
2p+1(1)

=
(−1)p(2p+ 1)

π
cos

(
(2p+ 1) arccos(x′

ib)
)
,

∀n ≥ 0,
1

|Sd−1|
h(n, 2)C0

n(x
′
ib)

C0
n(1)

=
1

π
cos

(
n arccos(x′

ib)
)
.
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To answer these questions it is useful to introduce the notion of the odd and even part of a

function defined on the sphere.

Definition 3.1. We denote the odd part and the even part of a function f by

f−(b) = (f(b)− f(−b))/2

and

f+(b) = (f(b) + f(−b))/2,

respectively, for every b in S
d−1.

Let us start with the question (Q1). As noted in Section A.1.4, operating H reduces the even

part of a function to a constant 1 and therefore it is impossible to recover f+
β from the knowledge

of r, which is what observations offer. Our identification strategy is therefore as follows: (Step 1)

Assume conditions that guarantee the identification of f−
β ; then (Step 2) Show that fβ is uniquely

determined from f−
β under a reasonable assumption. We first consider Step 1. Define H+ = H(n) =

{x ∈ S
d−1 : x′n ≥ 0}, where n = (1, , 0, ..., 0)′ , that is, the northern hemisphere of Sd−1. For later

use, also define its southern hemisphere H− = H(−n). Since the model we consider has a constant

as the first element of the covariate vector before normalization, the same vector after normalization

is necessarily an element of H+. We make the following assumption, which also appears in Ichimura

and Thompson (1998), and show that it achieves Step 1.

Assumption 3.1. The support of X is H+.

This assumption demands that X̃, the vector of non-constant covariates in the original scale, is

supported on the whole space R
d−1. It rules out discrete or bounded covariates; see Section 5 for

a potential approach to deal with regressors with limited support. In what follows we assume that

the law of X is absolutely continuous with respect to σ and denote its density by fX . Step 1 of

our identification argument is to show that the knowledge of r(x) on H+, which is available under

Assumption 3.1, identifies f−
β . The problem at hand calls for solving r = Hfβ = 1

2 + Hf−
β for f−

β ,

and the inversion formula derived in (4.1) is potentially useful for the purpose. A direct application

of the formula to r is inappropriate, however, since it requires integration of r on the whole sphere

S
d−1, but r is defined only on H+ even when X̃ has full support on R

d−1. An appropriate extension of

r(x), x ∈ H+ to the entire Sd−1 is in order. Using the random coefficients model (1.1) and Assumption
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1.1, then noting that fβ is a probability density function, conclude

(3.1) H(fβ)(−x) =

∫
H(−x)

fβ(b)dσ(b) = 1−H(fβ)(x) = 1− r(x)

for x in H+. This suggests an extension R of r to S
d−1 as follows:

(3.2) ∀x ∈ H+, R(x) = r(x), and ∀x ∈ H−, R(x) = 1− r(−x) = 1−R(−x).

The function R is well-defined on the whole sphere under Assumption 3.1. Later we derive a formula

for f−
β in terms of R(x), x ∈ S

d−1, which shows the identifiability of f−
β under Assumption 3.1.

Note that

R(x) = R+(x) +R−(x)(3.3)

=
1

2
[R(x) +R(−x)] +R−(x)

=
1

2
[R(x) + (1−R(x))] +R−(x) by (3.2)

=
1

2
+R−(x)

thus R is completely determined by its odd part and therefore,

R(x) =
1

2
+H

(
f−
β

)
(x),

or

(3.4) R− = Hf−
β .

We can invert this equation to obtain f−
β .

Now we turn to Step 2 in our identification argument. Obviously f−
β does not uniquely de-

termine fβ without further assumptions. This is a fundamental identification problem in our model.

We need to identify fβ from the choice probability function r, but we can choose an appropriate even

function g so that fβ + g is a legitimate density function (see the proof of Proposition 3.1 for such a

construction). Then r = H (fβ + g), and the knowledge of r identifies fβ only up to such a function g.

Ichimura and Thompson (1998, Theorem 1) give a set of conditions that imply the identification of the

model (1.1). One of their assumptions postulates that there exists c on S
d−1 such that P(c′β > 0) = 1.

This, in our terminology, means that:

Assumption 3.2. The support of β is a subset of some hemisphere.
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As noted by Ichimura and Thompson (1998), Assumption 3.2 does not seem too stringent

in many economic applications. It is often reasonable to assume that an element of the random

coefficients vector, such as a price coefficient, has a known sign. If the j-th element of β has a known

sign (and positive), then Assumption 3.2 holds with c being a unit vector with its j-th element being 1.

This is a case in which the location of the hemisphere in Assumption 3.2 is known a priori, though the

knowledge about its location is not necessary for identification. Assumption 3.2 implies the following

mapping from f−
β to fβ developed in (A.24):

(3.5) fβ(b) = 2f−
β (b)I

{
f−
β (b) > 0

}
.

This is useful because it shows that Assumption 3.2 guarantees identification if f−
β is identified.

Moreover, it will be used in the next section to develop a key formula that leads to a simple and

practical estimator for fβ that is guaranteed to be non-negative.

Remark 3.1. Assumption 3.2 is testable since it imposes restrictions on f−
β , which is identified under

weak conditions. For example, for values of b with f−
β (b) > 0, f−

β (−b) < 0 must hold. Or, it implies

that f−
β integrates to 1/(2|Sd−1|) on a hemisphere H(x) for some x, and −1/(2|Sd−1|) on the other

H(−x).

The subsequent result, Proposition 3.1, answers question (Q2), and a proof is given in Supple-

mental Appendix.

Notation. We use the notation L2(Sd−1) for the space of square integrable complex valued functions

equipped with the hermitian product (f, g)L2(Sd−1) =
∫
Sd−1 f(x)g(x)dσ(x), and more generally use

Lp(Sd−1) for p ∈ [1,∞] the Banach space of p-integrable functions and ‖ · ‖p the corresponding norm.

We also use the notation Ws
p(S

d−1) (and Hs(Sd−1) for p = 2) to signify the corresponding Sobolev

spaces with norm ‖ · ‖p,s defined as

(3.6) ‖f‖p,s = ‖f‖p +
∥∥∥(−ΔS

)s/2
f
∥∥∥
p

where ΔS denotes the Laplacian on the sphere S
d−1: See Section A.1.3 for further discussions.

Proposition 3.1. A [0, 1]-valued function r is compatible with the random coefficients model (1.1)

with fβ in L2(Sd−1) and Assumption 1.1 if and only if r is homogeneous of degree 0 and its extension

R according to (3.2) belongs to Hd/2(Sd−1).

The global smoothness assumption that R belongs to Hd/2(Sd−1) imposes substantial restriction

on the property of observables, that is, the behavior of the choice probability function r. Note that
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the smoothness condition in this proposition is stated in terms of R, and even if the choice probability

function r is sufficiently smooth on the support of X, which is H+, it is not necessarily consistent with

the random coefficients binary choice model (1.1) unless its extension is smooth globally on S
d−1. In

particular, the Sobolev embedding of Hs(Sd−1) into the space of continuous functions for s > (d−1)/2

implies that if the extension R is in Hd/2(Sd−1), it has to be continuous on S
d−1. This, in turn, means

that the corresponding r has to satisfy certain matching conditions at a boundary point x of H+ (i.e.

x′n = 0) and its opposite point −x.

4. Nonparametric Estimation of fβ

4.1. Derivation of the closed form estimation formula. This section discusses how the closed

form estimation formula (2.1) is derived. Suppose an odd function f− defined on S
d−1 satisfies an

integral equation f− = Hg with g square integrable with respect to the spherical measure. In Section

A.1.4 we show that the solution to this equation is given by:

(4.1) H−1(f−)(y) =
∞∑
p=0

1

λ(2p + 1, d)

∫
Sd−1

q2p+1,d(x, y)f
−(x)dσ(x)

where expressions for λ and q are provided in Proposition A.4 and Theorem A.1, respectively. If an

appropriate estimator R̂− of R− is available, an application of the inversion formula (4.1) to (3.4)

suggests the following estimator for f−
β :

f̂−
β = H−1

(
R̂−

)
(4.2)

=

∞∑
p=0

1

λ(2p + 1, d)

∫
Sd−1

q2p+1,d(·, x)R̂−(x)dσ(x).

Then use the mapping (3.5) to define

(4.3) f̂β(b) = 2f̂−
β (b)I

{
f̂−
β (b) > 0

}
as an estimator for fβ.

We use the following notation in the rest of the paper:

Notation. For two sequences of positive numbers (an)n∈N and (bn)n∈N, we write an � bn when there

exists a positive M such that M−1bn ≤ an ≤ Mbn for every positive n.

Proposition A.6 implies that if f̂−
β − f−

β ∈ Hs(Sd−1) then R̂− −R− ∈ Hσ(Sd−1), σ = s+ d
2 and

for v ∈ [0, s],

(4.4) ‖f̂−
β − f−

β ‖2,v � ‖R̂− −R−‖2,v+d/2.
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As discussed earlier, the estimation of fβ is related to deconvolution in S
d−1, and the degree of ill-

posedness in our model is d/2, which is indeed the rate at which the absolute values of the eigenvalues

of H (c.f. Proposition A.4) λ(n, d), n = 2p+1, p ∈ N converges to zero as p grows, as shown in (A.27).

Existing results for deconvolution problems (see, for example, Fan, 1991 and Kim and Koo, 2000)

then suggest that we should be able to estimate fβ at the rate N− s
2s+2d−1 in the L2(Sd−1) provided

that fβ ∈ Hs(Sd−1). The relationship (4.4), evaluated at v = 0, implies that this can be achieved if

we can estimate R− at the rate N− σ−d
2

2σ+d−1 in the ‖ · ‖2,d/2 norm. The latter is the usual nonparametric

rate for estimation of densities on d − 1 dimensional smooth submanifolds of Rd (see, for example,

Hendriks, 1990).

The estimation formula given in (4.2) is natural and reasonable, though it typically requires

numerical evaluation of integrals to implement it. Moreover, in practice one needs to evaluate the

infinite sum in (4.2), for example, by truncating the series. This results in a general estimator that

can be written in the following two equivalent forms

f̂−
β = H−1

(
PT̃N

R̂−
)

(4.5)

=

TN∑
p=0

1

λ(2p + 1, d)

∫
Sd−1

q2p+1,d(·, x)R̂−(x)dσ(x)

for suitably chosen T̃N that goes to infinity with N and PT̃N
defined in (A.20). The sequence H−1 ◦

PT̃N
, N = 1, 2, ... can be interpreted as regularized inverses of H, with the spectral cut-off method

often used in statistical inverse problems.

We now discuss how to obtain R̂− in the calculation of (4.5). The following choice is particularly

convenient:

(4.6) R̂−(x) =
1

N

N∑
i=1

(2yi − 1)K−
2TN

(xi, x)

max
(
f̂X(xi),mN

)
where mN is a trimming factor going to 0 with the sample size, K−(xi, ·) denotes the odd part (of

the second argument) of the kernel function K(xi, ·) defined in (A.23) and f̂X is a nonparametric

density estimator for fX . See Section A.1.5 of Supplemental Appendix for the derivation of the above

formula. Various nonparametric estimators for fX can be used in (4.6), since estimation of densities

on compact manifolds have been studied by several authors, using histogram (Ruymgaart (1989)),

projection estimators (see, e.g. Devroye and Gyorfi (1985) for the circle and Hendriks (1990) for

general compact Riemannian manifolds) or kernel estimators (see, e.g. Devroye and Gyorfi (1985)

for the case of the circle, and Hall et al. (1987) and Klemelä (2000) for higher dimensional spheres).
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Note also that Baldi et al. (2009) develops an adaptive density estimator on the sphere using needlet

thresholding. In the simulation experiment we use

(4.7) f̂X(x) = max

(
1

N

N∑
i=1

KT ′
N
(xi, x), 0

)

for a suitably chosen T ′
N that depends on the sample size and the smoothness of fX and KT ′

N
is

a kernel of the form (A.23) satisfying Assumption A.1. Note that its rate of convergence in sup-

norm can be obtained in the same manner as the proof of Theorem 4.1. This estimator is in the

spirit of the projection estimators of Hendriks (1990), but here we are able to derive a closed form

using the condensed harmonic expansions together with the Addition Formula. Note also that KTN

is a smoothed projection kernel (note the factor χ in (A.23)), which is used here in order to have

good approximation properties in the Lq(Sd−1) norms with arbitrary q ∈ [1,∞], in particular in the

L∞(Sd−1) norm.

Using (4.5) and (4.6) with T̃N = 2TN , define

f̂−
β = H−1

(
R̂−

)
= H−1

⎛
⎝ 1

N

N∑
i=1

(2yi − 1)K−
2TN

(xi, ·)
max

(
f̂X(xi),mN

)
⎞
⎠ .

Computing f̂−
β is straightforward. First, note that the estimator (4.6) for R− resides in a finite

dimensional space
⊕TN

p=0H
2p+1,d, therefore P2TN

R̂− = R̂− holds. Consequently, unlike in (4.5) where

a general estimator for R− is considered, we do not need to apply any additional series truncation to

R̂− prior to the inversion of H. Second, the estimator requires no numerical integration. To see this,

note the formula

H−1
(
K−

2TN
(xi, ·)

)
(b) =

TN−1∑
p=0

χ(2p+ 1, 2TN )

λ(2p + 1, d)
q2p+1,d(xi, b),

which follows from∫
Sd−1

q2p+1,d(x, b)K
−
2TN

(x, xi)dσ(x) =

∫
Sd−1

q2p+1(x, b)

TN−1∑
p′=1

χ(2p′ + 1, 2TN )q2p′+1,d(x, xi)dσ(x)

= χ(2p + 1, 2TN )q2p+1,d(b, xi).

which, in turn, can be seen by the definition of KT in (A.23), the fact that the integral operators with

q as kernels are projections and (A.16). Thus

f̂−
β (b) =

1

N

N∑
i=1

2yi − 1

max
(
f̂X(xi),mN

) TN−1∑
p=0

χ(2p + 1, 2TN )

λ(2p + 1, d)
q2p+1,d(xi, b).
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Using (4.3) and the Addition formula (Theorem A.1), we arrive at an estimator for fβ with the

following explicit form:

f̂β(b) = 2f̂−
β (b)I{f̂−

β (b) > 0},(4.8)

where f̂−
β (b) =

1

|Sd−1|
TN−1∑
p=0

χ(2p+ 1, 2TN )h(2p + 1, d)

λ(2p + 1, d)C
ν(d)
2p+1(1)

⎛
⎝ 1

N

N∑
i=1

(2yi − 1)C
ν(d)
2p+1(x

′
ib)

max
(
f̂X(xi),mN

)
⎞
⎠ .

This is equivalent to the formula (2.1) previously presented in Section 2. Likewise, using the definition

of the smoothing kernel (A.23) and the Addition Theorem in the above definition (4.7) of f̂X , we obtain

the formula (2.2) as well.

4.2. Rates of Convergence in Lq(Sd−1)-norms. Now we analyze the rate of our estimator f̂β. The

following assumption is weak and reasonable.

Assumption 4.1. fX ∈ L∞.

The proofs of the following theorems and corollaries in the rest of this section are given in

Section A.1.6 of Supplemental Appendix.

Theorem 4.1 (Upper bounds in Lq(Sd−1)). Suppose Assumptions A.1, 3.1 and 4.1 hold, and choose

TN that does not grow more than polynomially fast in N . If f−
β belongs to Ws

q(S
d−1) with q in [1,∞]

and s > 0, and

(4.9) max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ = Op (mN ) ,

then, for any 1 ≤ r ≤ q,∥∥∥f̂β − fβ

∥∥∥
q
= Op

(
m−1

N N−1/2T
(2d−1)/2
N (logN)(1/2−1/q)I{q≥2}

+ T−s
N + T

d/2
N m−2

N max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣

T d/2+(d−1)(1−1/r)
n σ (fX < mN )1/q−1/r+1

)
.(4.10)

When there exists m > 0 such that fX ≥ m σ a.e. on H+, the following holds for the estimator without

the trimming factor (i.e. mN = 0) when the estimator f̂X which is consistent in sup norm:∥∥∥f̂β − fβ

∥∥∥
q
= Op

(
N−1/2T

(2d−1)/2
N (logN)(1/2−1/q)I{q≥2}

+T−s
N + T

d/2
N max

i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣) .
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The first term in (4.10) is the stochastic error, the second term is the approximation bias, the

third the plug-in error and the fourth the trimming bias. Note that Theorem 4.1 imposes the mild

assumption (4.9); otherwise, we need to replace T
d/2
N m−2

N maxi=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ in (4.10) with

T
d/2
N m−2

N maxi=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ (1 + (logN)(1/2−1/q)I{q≥2}N−1/2T

(d−1)/2
N

)
. Since

max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ ≤ ∣∣∣fX − f̂X

∣∣∣
∞
,

this term can be made of order OP

((
N

logN

)−v/(2v+d−1)
)

when fX ∈ Wv∞ with a suitably chosen

parameter T ′
N if we take (4.7) as an estimator. The proof of the latter statement is classical and

can be obtained simplifying the proof of Theorem 4.1 and Corollary 4.1. Equation (4.10) yields that,

for proper choices of mN going to zero and TN to infinity, f̂β is consistent given that fX has some

smoothness in the Sobolev scales.

Though the additional condition of fX being bounded away from 0 in the last statement of

Theorem 4.1 is convenient, it is restrictive. To see this, consider the d = 2 case. In polar coordinates,

fX (cos(θ), sin(θ)) = fX̃(tan(θ))(1 + tan2(θ), thus, assuming fX ≥ m on H+, which does not require

trimming, yields

∀x ∈ R, fX̃(x) ≥ m

1 + x2
.

It implies that X̃ has tails larger than Cauchy tails and all moments are infinite. The introduction

of the trimming factor mN allows us to relax the assumption fX ≥ m, though it introduces bias. As

is clear from (4.10), the condition for the trimming bias to go to zero with N depends both on TN

and mN . The quantity σ(fX < mN ) should decay to zero with N sufficiently fast. We can check,

for example, that when X̃ is standard Gaussian then σ(fX < mN ) = O
(
(− logmN )−1/2

)
, when it is

Laplace then σ(fX < mN ) = O
(
(− logmN )−1

)
and when fX̃ is proportional to (1+x2)−k with k > 1

we obtain that σ(fX < mN ) = O
(
m

1/(2(k−1))
N

)
. In all these cases, it is possible to adjust adequately

TN and mN and to obtain rates of convergence. The upper bound on the rates become slower as the

tail of fX becomes thinner.

Nonparametric estimation of the regression function with random degenerate design, in the

sense that the density of regressors can be low on its support, is a difficult issue. It has been studied

for the pointwise risk in Hall et al. (1997), Gäıffas (2005), Gäıffas (2009) and Guerre (1999). Extension

to inverse problems setting is a widely open problem. We tackle this problem for our specific inverse

problem. Future research includes the study of lower bounds from the minimax point of view that

account for the degeneracy of the design.
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Let us now return to the general case of d − 1 regressors. The assumptions below allow

us to obtain rates that differ slightly from the rates that we would obtain in the ideal case where

fX ≥ m σ a.e. for positive m on H+.

Assumption 4.2. Suppose for q in [1,∞], there exist positive τ and rX such that

(i) σ(fX < h) = O(hτ ) and fX ∈ L∞,

and either

(ii)

max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ = Op

((
N

(logN)(1−2/q)I{q≥2}

)−rX
)

or,

(iii) for some constant C,

limN→∞
(

N

(logN)(1−2/q)I{q≥2}

)rX

max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ ≤ C a.s.

holds.

As seen before, Assumption 4.2 (ii) or (iii) are very mild. (i) holds for a reasonable class of

distributions for fX . In the above example where fX̃ is proportional to (1 + x2)−k with k > 1, we

have the relation τ = ρ/(2(k − 1)). This allows for a higher order moment to exist for a large k.

Corollary 4.1. Assume that f−
β belongs to Ws

q(S
d−1) with q in [1,∞] and s > 0. Let assumptions

A.1, 3.1, 4.1 and 4.2 (i) and (ii) hold, and take

mN �
(

N

(logN)(1−2/q)I{q≥2}

)−ρ

, TN �
(

N

(logN)(1−2/q)I{q≥2}

)γ(ρ)

where ρ yields a maximum γ of

γ(ρ) = min

(
1− 2ρ

2s + 2d− 1
,

2ρτ

2s + d+ 2(d− 1)(1 − 1/q)
,
2rX − 4ρ

2s+ d
,

1

d− 1

)
.

We then have

(4.11)
∥∥∥f̂β − fβ

∥∥∥
q
= Op

((
N

(logN)(1−2/q)I{q≥2}

)−γs
)
.

Moreover, if, instead of Assumption 4.2 (ii), Assumption 4.2 (iii) holds with q = ∞, then there exists

a constant C such that

(4.12) limN→∞
(

N

logN

)γs ∥∥∥f̂β − fβ

∥∥∥
∞

≤ C a.s.
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The rate γs in Corollary 4.1 accounts for the dimension d− 1, the degree of smoothing d/2 of

the operator and features of the density of the covariates (i.e. its smoothness and tail behavior).

We now make stronger assumptions on fX and its estimate that yield, up to a logarithmic

term, the convergence rate N− s
2s+2d−1 . We need to be able to trim the estimate of fX with a term

which is logarithmic in N : mN = (logN)−ρ for some positive ρ.

Assumption 4.3. Suppose for q in [1,∞], and positive rσ and rX ,

(i) σ(fX < (logN)−ρ) = O

((
N

(logN)2ρ+(1−2/q)I{q≥2}

)−rσ
)
,

and either

(ii)

max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ = Op

(
(logN)−2ρ

(
N

(logN)2ρ+(1−2/q)I{q≥2}

)−rX
)

or,

(iii) for some constant C,

limN→∞(logN)2ρ
(

N

(logN)2ρ+(1−2/q)I{q≥2}

)rX

max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ ≤ C a.s.

Corollary 4.2. Assume that f−
β belongs to Ws

q(S
d−1) with q in [1,∞] and s > 0. Let assumptions

A.1, 3.1, 4.1 and 4.3 (i)-(ii), hold, and take

TN �
(

N

(logN)2ρ+(1−2/q)I{q≥2}

)γ

where

γ = min

(
1

2s + 2d− 1
,

2rσ
2s+ d+ 2(d− 1)(1 − 1/q)

,
2rX

2s+ d

)
then we have

(4.13)
∥∥∥f̂β − fβ

∥∥∥
q
= Op

((
N

(logN)2ρ+(1−2/q)I{q≥2}

)−γs
)
.

Moreover, if, instead of Assumption 4.3 (ii), Assumption (iii) holds with q = ∞, then there exists a

constant C such that

(4.14) limN→∞
(

N

(logN)2ρ+1

)γs ∥∥∥f̂β − fβ

∥∥∥
∞

≤ C a.s.

When fX ∈ W
s+d/2+ε
∞ (Sd−1) for any positive ε then 2rX

2s+d > 1
2s+2d−1 and γ in Corollary 4.2

is simply min
(

1
2s+2d−1 ,

2rσ
2s+d+2(d−1)(1−1/q)

)
. Recall that the smoothness s + d/2 is related to the

smoothness of R. Indeed, we have seen in Section 3 that R ∈ W
s+d/2
2 (Sd−1) if and only if fβ ∈

Ws
2(S

d−1).



16 GAUTIER AND KITAMURA

Consider now the most restrictive case where fX ≥ m σ a.e., then the estimator without the

trimming factor (i.e. mN = 0) satisfies the following:

Corollary 4.3. Assume that f−
β belongs to Ws

q(S
d−1) with q in [1,∞] and s > 0. Let assumptions

A.1, 3.1 and 4.1 hold, and suppose, for positive rX ,

(4.15) max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ = Op

((
N

(logN)(1−2/q)I{q≥2}

)−rX
)
.

Take

TN �
(

N

(logN)(1−2/q)I{q≥2}

)γ

where

γ = min

(
1

2s + 2d− 1
,

2rX
2s+ d

)
then we have

(4.16)
∥∥∥f̂β − fβ

∥∥∥
q
= Op

((
N

(logN)(1−2/q)I{q≥2}

)−γs
)
.

Moreover, if we replace (4.15) by for some positive C

(4.17)

(
N

(logN)(1−2/q)I{q≥2}

)rX

max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ ≤ C a.s.

then

(4.18) limN→∞
(

N

logN

)γs ∥∥∥f̂β − fβ

∥∥∥
∞

≤ C a.s.

When fX belongs to W
s−d/2+ε
∞ , for arbitrary positive ε, γ = 1

2s+2d−1 in Corollary 4.3, and we

recover the L2 convergence rate of N
s

2s+2d−1 , the rate mentioned in Section 4.1. It is in accordance with

the L2 rate in Healy and Kim (1996) who study deconvolution on S
2 for non-degenerate kernels. Kim

and Koo (2000) prove that the rate in Healy and Kim (1996) is optimal in the minimax sense. Their

statistical problem, however, involves neither a plug-in method nor trimming. Also, somewhat less

importantly, it does not cover the case when the convolution kernel is given by an indicator function,

which appears in our operator H. Hoderlein et al. (2010) study a linear model of the form W = X ′β

where β is a d-vector of random coefficients. They obtain a nonparametric random coefficients density

estimator that has the L2-rate N− s
2s+2d−1 when fX ≥ mσ a.e. for positive m3 when fX is assumed

to be bounded from below and thus no trimming is required. They also consider trimming but the

3Note that the dimension of their estimator is d, whereas that of ours is d− 1. On the other hand, in their problem

W is observable, and it is obviously more informative than our binary outcome Y , which causes difficulties both in

identification and estimation.
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approach is slightly different and rates of convergence are not given. Unlike the previous results, we

cover Lq loss for all q ∈ [1,∞].

4.3. Pointwise Asymptotic Normality. This section discusses the asymptotic normality property

of our estimator.

Theorem 4.2 (Asymptotic normality). Suppose f−
β belongs to Ws∞(Sd−1) with s > 0, and Assump-

tions A.1, 3.1 and 4.1 hold. If f̂X , fX , mN and TN satisfy

N1/2T
−(d−1)/2
N m−2

N max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ = op(1),(4.19)

N−1/2T
(d−1)/2
N m

−(1+ε)
N = o(1) for some ε > 0,(4.20)

N1/2T
− 2s+2d−1

2
N = o(1),(4.21)

N1/2T
(d−1)/2
N σ ({fX < mN}) = o(1)(4.22)

then

(4.23) N
1
2 s−1

N (b)
(
f̂β(b)− fβ(b)

)
d→ N(0, 1)

holds for b such that fβ(b) �= 0, where s2N (b) := var(ZN (b)), ZN (b) = 2
(2Y −1)H−1

(
K−

2TN
(X,·)

)
(b)

max(fX (X),mN ) .

The standard error sN (b) is the standard deviation of

(4.24) ZN (b) =
2

|Sd−1|
TN−1∑
p=0

χ(2p + 1, 2TN )h(2p + 1, d)

λ(2p+ 1, d)C
ν(d)
2p+1(1)

(
(2Y − 1)C

ν(d)
2p+1(X

′b)
max(fX(X),mN )

)

(see equation (4.8)), which can be estimated using an estimate f̂X of fX .

The next theorem is concerned with the restrictive case where the density of the covariates is

bounded from below and hence the trimming factor mN is set at zero.

Theorem 4.3 (Asymptotic normality when the density of the covariates is bounded from below).

Suppose f−
β belongs to Ws∞(Sd−1) with s > 0, and Assumptions A.1, 3.1 and 4.1 hold. If f̂X, fX and

TN satisfy

N1/2T
−(d−1)/2
N max

i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ = op(1),(4.25)

N−1/2T
(d−1)/2
N = o(1)(4.26)

N1/2T
− 2s+2d−1

2
N = o(1),(4.27)
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then

(4.28) N
1
2 s−1

N (b)
(
f̂β(b)− fβ(b)

)
d→ N(0, 1)

holds for b such that fβ(b) �= 0, where s2N (b) := var(ZN (b)), ZN (b) = 2
(2Y −1)H−1

(
K−

2TN
(X,·)

)
(b)

fX(X) .

A formula for ZN for this case is obtained by replacing max(fX(X),mN ) with fX(X) in (4.24).

Note that s2N (b) grows at the rate of T 2d−1
N in this case.

5. Discussion

5.1. Estimation of Marginals. In Section 3 we have provided an expression for the estimator of the

full joint density of β, from which an estimator for a marginal density can be obtained. Let σk denote

the surface measure and σk = σk/|Sk| the uniform probability measure on S
k. We write β =

(
β
′
, β

′)′
and wish to obtain the density of the marginal of β which is a vector of dimension k. Also define P and

P the projectors such that β = Pβ and β = Pβ and denote by P ∗σd−1 and P ∗σd−1 the direct image

probability measures. One possibility is to define the marginal law of β as the measure P ∗Pβ, where

dPβ = fβdσ. This may not be convenient, however, since the uniform distribution over S
d−1 would

have U-shaped marginals. The U-shape becomes more pronounced as the dimension of β increases.

In order to obtain a flat density for the marginals of the uniform joint distribution on the sphere it is

enough to consider densities with respect to the dominating measure P ∗σd−1. Notice that sampling U

uniformly on S
d−1 is equivalent to sampling U according to P ∗σd−1 and then given U forming ρ

(
U
)
V

where V is a draw from the uniform distribution σd−1−k on S
d−1−k and ρ

(
U
)
=

√
1−

∥∥∥U∥∥∥2. Indeed
given U , U/ρ

(
U
)
is uniformly distributed on S

d−1−k. Thus, when g is an element of L1(Sd−1) we can

write for k in {1, . . . , d− 1},

(5.1)

∫
Sd−1

g(b)dσd−1(b) =

∫
Bk

[∫
Sd−1−k

g
(
ρ
(
b
)
u, b

)
dσd−1−k(u)

]
dP ∗σd−1

(
b
)

where Bk is the k dimensional ball of radius 1. Setting g = |Sd−1|fβ(b)I
{
b ∈ A

}
for A Borel set of Bk

shows that the marginal density of β with respect to the dominating measure P ∗σd−1 is given by

(5.2) f
β

(
b
)
= |Sd−1|

∫
Sd−1−k

fβ

(
ρ
(
b
)
u, b

)
dσd−1−k(u).
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One can use deterministic methods to compute the integral (e.g., Narcowich et al. (2006) for quadra-

ture methods on the sphere) or for example one may use a Monte-Carlo method, by forming

(5.3) f̂M

β

(
b
)
=

|Sd−1|
M

M∑
j=1

f̂β

(
ρ
(
b
)
uj , b

)

where uj, j = 1, ...,M are draws from independent uniform random variables on S
d−1−k.

5.2. Treatment of Non-Random Coefficients. It may be useful to develop an extension of the

method described in the previous sections to models that have non-random coefficients, at least for

two reasons.4 First, the convergence rate of our estimator of the joint density of β slows down as

the dimension d of β grows, which is a manifestation of the curse of dimensionality. Treating some

coefficients as fixed parameters alleviates this problem. Second, our identification assumption in

Section 3 precludes covariates with discrete or bounded support. This may not be desirable as many

random coefficient discrete choice models in economics involve dummy variables as covariates. As

we shall see shortly, identification is possible in a model where the coefficients on covariates with

limited support are non-random, provided that at least one of the covariates with “large support” has

a non-random coefficient as well. More precisely, consider the model:

(5.4) Yi = I{β1i + β′
2iX2i + α1Z1i + α′

2Z2i ≥ 0}

where β1 ∈ R and β2 ∈ R
dX−1 are random coefficients, whereas the coefficients α1 ∈ R and α2 ∈ R

dZ−1

are nonrandom. The covariate vector (Z1, Z
′
2)

′ is in R
dZ , though the (dZ − 1)-subvector Z2 might

have limited support: for example, it can be a vector of dummies. The covariate vector (X ′
2, Z1)

′

is assumed to be, among other things, continuously distributed. Normalizing the coefficients vector

and the vector of covariates to be elements of the unit sphere works well for the development of our

procedure, as we have seen in the previous sections. The model (5.4), however, is presented “in the

original scale” to avoid confusion.

Define β∗
1(Z2) := β1 + α′

2Z2. We also use the notation

τ(Z2) :=
(β∗

1(Z2), α1, β2)
′

‖(β∗
1(Z2), α1, β

′
2)‖

∈ S
dX+1,W :=

(1, Z1,X
′
2)

′

‖(1, Z1,X
′
2)

′‖ ∈ S
dX+1.

Then (5.4) is equivalent to:

Y = I{(β∗
1 (Z2), α1, β2)(1, Z1,X

′
2)

′ ≥ 0}

4Hoderlein et al. (2010) suggest a method to deal with non-random coefficients in their treatment of random coefficient

linear regression models.
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= I
{
τ(Z2)

′W ≥ 0
}
.

This has the same form as our original model if we condition on Z2 = z2. We can then apply previous

results for identification and estimation under the following assumptions. First, suppose (β1, β
′
2)

′ and

W are independent, instead of Assumption 1.1. Second, we impose some conditions on fW |Z2=z2 , the

conditional density of W given Z2 = z2. More specifically, suppose there exists a set Z2 ⊂ R
dZ−1,

such that Assumption 3.1 holds if we replace fX and d with fW |Z2=z2 and dX + 1 for all z2 ∈ Z2. If

Z2 is a vector of dummies, for example, Z2 would be a discrete set. By (A.30) and (4.1) we obtain

(5.5) f−
τ(Z2)|Z2=z2

(t) =
∞∑
p=0

1

λ(2p+ 1, dX + 1)
E

[
(2Y − 1)q2p+1,dX+1(W, t)

fW |Z2=z2(W )

∣∣∣∣Z2 = z2

]

for all z2 ∈ Z2, where the right hand side consists of observables. This determines fτ(Z2)|Z2=z2 . That

is, the conditional density

f

(
(β∗

1(Z2), α1, β2)

‖(β∗
1(Z2), α1, β2)′‖

∣∣∣∣Z2 = z2

)
is identified for all z2 ∈ Z2 (Here and henceforth we use the notation f(·|·) to denote conditional

densities with appropriate arguments when adding subscripts is too cumbersome). This obviously

identifies

(5.6) f

(
(β∗

1(Z2), α1, β2)

‖β2‖
∣∣∣∣Z2 = z2

)

for all z2 ∈ Z2 as well. If we are only interested in the joint distribution of β2 under a suitable

normalization, we can stop here. The presence of the term α1Z1 in (5.4) is unimportant so far.

Some more work is necessary, however, if one is interested in the joint distribution of the

coefficients on all the regressors. Notice that the distribution (5.6) gives

f

(
β∗
1(Z2)

‖β2‖
∣∣∣∣Z2 = z2

)
= f

(
β1 + α′

2Z2

‖β2‖
∣∣∣∣Z2 = z2

)
,

from which we can, for example, get

E

(
β∗
1(Z2)

‖β2‖
∣∣∣∣Z2 = z2

)
= E

(
β1
‖β2‖

)
+ E

(
1

‖β2‖
)
α′
2z2 for all z2 ∈ Z2.

Define a constant

c := E

(
1

‖β2‖
)

then we can identify cα2 as far as z2 ∈ Z2 has enough variation and

E

(
α1

‖β2‖
)

= cα1
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is identified as well. Let

(5.7) f

(
(β′

2, α1, α
′
2)

′

‖β2‖
)

denote the joint density of all the coefficient (except for β1, which corresponds to the conventional

disturbance term in the original model (5.4), normalized by the length of β2). Then

f

(
(β′

2, α1, α
′
2)

′

‖β2‖
)

= f

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
IdX−1 0

0 1
... cα2

cα1

⎤
⎥⎥⎥⎦
⎡
⎣ β2

‖β2‖
α1
‖β2‖

⎤
⎦
⎞
⎟⎟⎟⎠ .

In the expression on the right hand side, f ((β′
2, α1)

′/‖β2‖) is available from (5.6), and cα1 and cα2 are

identified already, therefore the desired joint density (5.7) is identified. Obviously (5.7) also determines

the joint density of (β′
2, α1, α

′
2)

′ under other suitable normalizations as well.

The density (5.5) is estimable: when Z2 is discrete, one can use the estimator of Section 4 to

each subsample corresponding to each value of Z2. If Z2 is continuous we can estimate fW |Z2=z2 and

the conditional expectation by nonparametric smoothing. An estimator for the density (5.6) can be

then obtained numerically.

5.3. Endogenous Regressors. Assumption 1.1 is violated if some of the regressors are endogenous

in the sense that the random coefficients and the covariates are not independent. This problem can

be solved if an appropriate vector of instruments is available. To be more specific, suppose we observe

(Y,X,Z) generated from the following model

(5.8) Y = I{β1 + β̃′X ≥ 0}

with

(5.9) X = ΓZ + V

where V is a vector of reduced form residuals and Z is independent of (β, V ). Note that Hoderlein et

al. (2010) utilize a linear structure of the form (5.9) in estimating a random coefficient linear model.

The equations (5.8) and (5.9) yield

Y = I{
(
β1 + V ′β̃

)
+ Z ′Γ′β̃}.

Suppose the distribution of ΓZ satisfy Assumption 3.1. It is then possible to estimate the density

of τ = τ/‖τ‖ where τ =
(
β1 + V ′β̃, β̃

)′
by replacing Γ with a consistent estimator, which is easy to
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obtain under the maintained assumptions. This yields an estimator for the joint density of β̃/‖τ‖, the
random coefficients on the covariates under scale normalization.

6. Numerical Examples

The purpose of this section is to illustrate the performance of our new estimator in finite

samples using simulated data. We consider the model of the form (1.1) with d = 3. The covariates are

specified to be X = (1,X2,X3) where (X2,X3)
′ ∼ N(

(0
0

)
, 2 ·I2). The coefficients vector β = (β1, β2, 1)

′

is set random except for the last element. Fixing the last component constant fulfills Assumption 3.2

for identification. Two specifications for the random elements (β1, β2) are considered. In the first

specification (Model 1) we let (β1, β2)
′ ∼ N(

(0
0

)
, 0.3 · I2). In the second (Model 2) we consider a two

point mixture of normals

(
β1
β2

)
∼ λN

⎛
⎝( μ

−μ

)
,

⎡
⎣ σ2 ρσ2

ρσ2 σ2

⎤
⎦
⎞
⎠+ (1− λ)N

⎛
⎝(−μ

μ

)
,

⎡
⎣ σ2 ρσ2

ρσ2 σ2

⎤
⎦
⎞
⎠ ,

where μ = 0.7, σ2 = 0.3, ρ = 0.5 and λ = 0.5. The sample size N is 500 for both models, and the

number of Monte Carlo replications is 10,000. The new estimator (4.8) is implemented using the Riesz

kernel with s = 3 and l = 3 (see Proposition A.3). The truncation parameter TN is set at 3, and

the trimming parameter ρ (see Assumption 4.3) is 2. It also requires a nonparametric estimator for

fX , and we use the projection estimator (4.7) based on the same Riesz kernel (i.e. s = 3, l = 3) and

TN = 10. Figures 1 and 2 present the surface plots of the true density (left panel) and the mean of

our estimator (right panel), for each of the two specifications. The mean E[f̂β] is calculated as the

empirical average of 10,000 Monte Carlo realizations of f̂β. Our estimator (4.8) is defined on S
2 in

this case, and we performed an appropriate transformation to plot it as a density on R
2.
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Figure 1. Simulation result: Model 1

Figure 2. Simulation result: Model 2

In the case of model 1, with the reasonable sample size, the location of the peak of the density,

as well as its shape, are successfully recovered by our procedure. For model 2, again, our procedure

works well: the estimated surface plot nicely captures the shape of the true density, thereby exhibiting
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the underlying mixture structure. While further experimentations are necessary, these results seem

to indicate our estimator’s good performance in practical settings.

7. Conclusion

In this paper we have considered nonparametric estimation of a random coefficients binary

choice model. By exploiting (previously unnoticed) connections between the model and statistical de-

convolution problems and applying results of integral transformation on the sphere, we have developed

a new estimator that is practical and possesses desirable statistical properties. It requires neither nu-

merical optimization nor numerical integration, and as such its computational cost is trivial and local

maxima and other difficulties in optimization need not be of concern. Its rate of convergence in the

Lq norm for all q ∈ [1,∞] is derived. Our numerical example suggests that the new procedure works

well in finite samples, consistent with its good theoretical properties. It is of great theoretical and

practical interest to obtain an adaptive procedure for choosing the smoothing parameters of our esti-

mator, though it is a task we defer to subsequent investigations.5 With appropriate under-smoothing,

the estimator is shown to be asymptotically normal, providing a theoretical basis for nonparametric

statistical inference for the random coefficients distribution.

5Gautier and Le Pennec (2011) consider a needlet-based procedure and discuss its rate optimality in a minimax sense

and adaptation.
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