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A.1. PROOFS OF MAIN RESULTS

THIS SUPPLEMENT PRESENTS the proofs of some of the results presented in the
previous sections.

A.1.1. Proof of Lemma 2.1

We first show the claim for α< 1
2 , that is,

(1 − α)Iα(P�Q)− 1
2
I1/2(P�Q)≥ 0�(A.1)

Let Hα(x) = 1
α
(1 − xα) − 2(1 − x1/2), 0 ≤ x ≤ ∞; then the above inequality

becomes ∫
Hα

(
p

q

)
qdν ≥ 0�(A.2)

Note that

d

dx
Hα(x)= −xα−1 + x−1/2

{
> 0� if x > 1,
= 0� if x= 1,
< 0� if x < 1.

The above holds for the case with α= 0 as well, since H0(x)= − logx− 2(1 −
x1/2). Moreover,Hα(1)= 0. ThereforeHα(x)≥ 0 for all x≥ 0, and the desired
inequality (A.2) follows immediately. Next, we prove the case with α > 1

2 , that
is,

αIα(P�Q)≥ 1
2
I1/2(P�Q)�

Let β= 1 − α< 1
2 ; then the above inequality becomes

(1 −β)I1−β(P�Q)≥ 1
2
I1/2(P�Q)�(A.3)

By (A.1) and the symmetry of the Hellinger distance,

(1 −β)Iβ(Q�P)≥ 1
2
I1/2(Q�P)= 1

2
I1/2(P�Q)�

© 2013 The Econometric Society DOI: 10.3982/ECTA8617

http://www.econometricsociety.org/suppmatlist.asp
http://www.econometricsociety.org/
http://dx.doi.org/10.3982/ECTA8617


2 Y. KITAMURA, T. OTSU, AND K. EVDOKIMOV

But the equality I1−β(P�Q) = Iβ(Q�P) holds for every β ∈ R, and (A.3) fol-
lows.

NOTATION: Let C be a generic positive constant, ‖ · ‖ be the L2-metric,

θn = θ0 + t/√n� T̄Qn = T̄ (Qn)� T̄Pn = T̄ (Pn)�

P̄θ�Q = arg min
P∈P̄θ

H(P�Q)� Rn(Q�θ�γ)= −
∫

1
(1 + γ′gn(x�θ))

dQ�

gn(x�θ)= g(x�θ)I{x ∈ Xn}�
Λn =G′Ω−1gn(x�θ0)� Λ=G′Ω−1g(x�θ0)�

ψn�Qn = −2
(∫

ΛnΛ
′
n dQn

)−1 ∫
Λn

{
dQ1/2

n − dP̄1/2
θ0�Qn

}
dQ1/2

n �

A.1.2. Proof of Theorem 3.1

A.1.2.1. Proof of (i)

Pick arbitrary r > 0 and t ∈ R
p. Consider the following parametric submodel

having the likelihood ratio

dPθn�ζn
dP0

= 1 + ζ ′
ngn(x�θn)∫

(1 + ζ ′
ngn(x�θn))dP0

= f (x�θn� ζn)�(A.4)

where

ζn = −EP0

[
g(x�θn)gn(x�θn)

′]−1
EP0

[
g(x�θn)

]
�

Note that Pθ0�0 = P0, Pθn�ζn ∈ Pθn (by the definition of ζn), and ζn =O(n−1/2) (by
the proof of Lemma A.4(i)). Also, since supx∈X |ζ ′

ngn(x�θn)| = O(n−1/2mn) =
o(1), the likelihood ratio dPθn�ζn

dP0
is well defined for all n large enough. So, for

this submodel the mapping Ta must satisfy (3.1).
We now evaluate the Hellinger distance between Pθn�ζn and P0. An expansion

around ζn = 0 yields

H(Pθn�ζn�P0)=
∥∥∥∥ζ ′

n

∂f (x�θn� ζn)
1/2

∂ζn

∣∣∣∣
ζn=0

dP1/2
0

+ 1
2
ζ ′
n

∂2f (x�θn� ζn)
1/2

∂ζn∂ζ ′
n

∣∣∣∣
ζn=ζ̇n

ζn dP
1/2
0

∥∥∥∥�
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where ζ̇n is a point on the line joining ζn and 0, and

∂f (x�θn� ζn)
1/2

∂ζn

∣∣∣∣
ζn=0

= 1
2
{
gn(x�θn)−EP0

[
gn(x�θn)

]}
�

∂2f (x�θn� ζn)
1/2

∂ζn ∂ζ ′
n

= −1
4
(
1 + ζ ′

ngn(x�θn)
)−3/2(

1 + ζ ′
nEP0

[
gn(x�θn)

])−1/2

× gn(x�θn)gn(x�θn)′

− 1
2
(
1 + ζ ′

ngn(x�θn)
)−1/2(

1 + ζ ′
nEP0

[
gn(x�θn)

])−3/2

× gn(x�θn)EP0

[
gn(x�θn)

]′

+ 3
4
(
1 + ζ ′

ngn(x�θn)
)1/2(

1 + ζ ′
nEP0

[
gn(x�θn)

])−5/2

×EP0

[
gn(x�θn)

]
EP0

[
gn(x�θn)

]′
�

Thus, a lengthy but straightforward calculation combined with Lemma A.4,
ζn =O(n−1/2), and supx∈X |ζ ′

ngn(x�θn)| = o(1) implies

nH(Pθn�ζn�P0)
2 = n

∥∥∥∥1
2
ζ ′
n

(
gn(x�θn)−EP0

[
gn(x�θn)

])
dP1/2

0

∥∥∥∥
2

+ o(1)(A.5)

→ 1
4
t ′Σ−1t�

Based on this limit, a lower bound of the maximum bias of Ta is obtained as
(see, Rieder (1994, eq. (56), p. 180))

lim inf
n→∞

sup
Q∈BH(P0�r/

√
n)

n
(
τ ◦ Ta(Q)− τ(θ0)

)2

≥ lim inf
n→∞

sup
{t∈Rp:Pθn�ζn∈BH(P0�r/

√
n)}
n
(
τ ◦ Ta(Pθn�ζn)− τ(θ0)

)2

≥ max
{t∈Rp:(1/4)t′Σt≤r2−ε}

((
∂τ(θ0)

∂θ

)′
t

)2

= 4
(
r2 − ε)(∂τ(θ0)

∂θ

)′
Σ−1

(
∂τ(θ0)

∂θ

)
�

for each ε ∈ (0� r2), where the first inequality follows from the set inclusion re-
lationship, the second inequality follows from (3.1) and (A.5), and the equality
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follows from the Kuhn–Tucker theorem. Since ε can be arbitrarily small, we
obtain the conclusion.

A.1.2.2. Proof of (ii)

Pick arbitrary r > 0 and sequence Qn ∈ BH(P0� r/
√
n). We first show the

Fisher consistency of T̄ . From Lemma A.2 (note: Pθn�ζn ∈ BH(P0� r/
√
n) for

all n large enough),

√
n
(
T̄ (Pθn�ζn)− θ0

) = −√
nΣ−1

∫
Λn dPθn�ζn + o(1)

= Σ−1G′Ω−1

∫
∂g(x� θ̇)/∂θdPθn�ζn t + o(1)

→ t

for all n large enough, where θ̇ is a point on the line joining θn and θ0, the
second equality follows from

∫
g(x�θ0)I{x /∈ Xn}dPθn�ζn = o(n−1/2) (by an ar-

gument similar to (A.16)),
∫
g(x�θn)dPθn�ζn = 0 (by Pθn�ζn ∈ Pθn), and an ex-

pansion around θn = θ0, and the convergence follows from the last statement
of Lemma A.4(i). Therefore, T̄ is Fisher consistent.

We next show (3.1). An expansion of τ ◦ T̄Qn around T̄Qn = θ0, Lem-
mas A.1(ii) and A.2, and Assumption 3.1(viii) imply

√
n
(
τ ◦ T̄Qn − τ(θ0)

) = −√
n

(
∂τ(θ0)

∂θ

)′
Σ−1

∫
Λn dQn + o(1)

= −√
nν′

0

∫
Λn

{
dQ1/2

n − dP1/2
0

}
dQ1/2

n

− √
nν′

0

∫
Λn dP

1/2
0

{
dQ1/2

n − dP1/2
0

} + o(1)�

where we denote ν′
0 = ( ∂τ(θ0)

∂θ
)′Σ−1. From the triangle inequality,

n
(
τ ◦ T̄Qn − τ(θ0)

)2

≤ n
{∣∣∣∣ν′

0

∫
Λn

{
dQ1/2

n − dP1/2
0

}
dQ1/2

n

∣∣∣∣
2

+
∣∣∣∣ν′

0

∫
Λn

{
dQ1/2

n − dP1/2
0

}
dP1/2

0

∣∣∣∣
2

+ 2
∣∣∣∣ν′

0

∫
Λn

{
dQ1/2

n − dP1/2
0

}
dQ1/2

n

∣∣∣∣
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×
∣∣∣∣ν′

0

∫
Λn

{
dQ1/2

n − dP1/2
0

}
dP1/2

0

∣∣∣∣
}

+ o(1)

= n{A1 +A2 + 2A3} + o(1)�
For A1, observe that

A1 ≤
∣∣∣∣ν′

0

∫
ΛnΛ

′
n dQnν0

∣∣∣∣
∣∣∣∣
∫ {
dQ1/2

n − dP1/2
0

}2
∣∣∣∣ ≤ B∗ r

2

n
+ o(n−1

)
�

where the first inequality follows from the Cauchy–Schwarz inequality, and the
second inequality follows from Lemma A.5(i) and Qn ∈ BH(P0� r/

√
n). Simi-

larly, we have A2 ≤ B∗ r2
n

+ o(n−1) and A3 ≤ B∗ r2
n

+ o(n−1). Combining these
terms,

lim sup
n→∞

n
(
τ ◦ T̄Qn − τ(θ0)

)2 ≤ 4r2B∗�(A.6)

for any sequenceQn ∈ BH(P0� r/
√
n) and r > 0. Pick any r > 0. Since the supre-

mum supQ∈BH(P0�r/
√
n) n(τ ◦ T̄ (Q)− τ(θ0))

2 is finite for all n large enough (from
Lemma A.1(i)), there exists a sequence Q∗

n ∈ BH(P0� r/
√
n) such that

lim sup
n→∞

n
(
τ ◦ T̄Q∗

n
− τ(θ0)

)2

= lim sup
n→∞

sup
Q∈BH(P0�r/

√
n)

n
(
τ ◦ T̄ (Q)− τ(θ0)

)2
�

Therefore, the conclusion follows by (A.6).

A.1.3. Proof of Theorem 3.2

A.1.3.1. Proof of (i)

Pick arbitrary ε ∈ (0� r2) and r > 0. Consider the parametric submodel Pθn�ζn
defined in (A.4). The convolution theorem (Theorem 25.20 of van der Vaart
(1998)) implies that, for each t ∈ R

p, there exists a probability measureM0 that
does not depend on t and satisfies

√
n
(
τ ◦ Ta(Pn)− τ ◦ Ta(Pθn�ζn)

) d→M0 ∗N(
0�B∗) under Pθn�ζn �(A.7)

Let

t∗ = arg max
{t∈Rp:(1/4)t′Σt≤r2−ε}

((
∂τ(θ0)

∂θ

)′
t

)2

s.t.
(
∂τ(θ0)

∂θ

)′
t

∫
ξdM0 ∗N(

0�B∗) ≥ 0�
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Since the integral
∫
ξdM0 ∗ N(0�B∗) does not depend on t, such t∗ always

exists. From 1
4 t

∗′Σt∗ ≤ r2 −ε and (A.5), it holds that Pθ0+t∗/√n�ζn ∈ BH(P0� r/
√
n)

for all n large enough. Also, note that EPθn�ζn [supθ∈Θ |g(x�θ)|η] <∞ for all n
large enough (by supx∈X |ζ ′

ngn(x�θn)| = o(1) and Assumption 3.1(v)). Thus,
Pθ0+t∗/√n�ζn ∈ B̄H(P0� r/

√
n) for all n large enough, and we have

lim
b→∞

lim inf
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
b∧ n(τ ◦ Ta(Pn)− τ(θ0)

)2
dQ⊗n

≥ lim
b→∞

lim inf
n→∞

∫
b∧ n(τ ◦ Ta(Pn)− τ(θ0)

)2
dP⊗n

θ0+t∗/√n�ζn

= lim
b→∞

lim inf
n→∞

∫
b∧ n

(
ξ+

(
∂τ(θ0)

∂θ

)′
t∗

)2

dM0 ∗N(
0�B∗)

=
∫
ξ2 dM0 ∗N(

0�B∗) +
((
∂τ(θ0)

∂θ

)′
t∗

)2

+ 2
(
∂τ(θ0)

∂θ

)′
t∗

∫
ξdM0 ∗N(

0�B∗)
≥ {

1 + 4
(
r2 − ε)}B∗�

where the first equality follows from the Fisher consistency of Ta, (A.9), and the
continuous mapping theorem, the second equality follows from the monotone
convergence theorem, and the second inequality follows from the definition of
t∗. Since ε can be arbitrarily small, we obtain the conclusion.

A.1.3.2. Proof of (ii)

Pick arbitrary r > 0 and b > 0. Applying the inequality b ∧ (c1 + c2) ≤ b ∧
c1 + b∧ c2 for any c1� c2 ≥ 0,

lim sup
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
b∧ n(τ ◦ T(Pn)− τ(θ0)

)2
dQ⊗n(A.8)

≤ lim sup
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
b∧ n(τ ◦ T(Pn)− τ ◦ T̄ (Pn)

)2
dQ⊗n

+ 2 lim sup
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
b∧ {

n
∣∣τ ◦ T(Pn)− τ ◦ T̄ (Pn)

∣∣
× ∣∣τ ◦ T̄ (Pn)− τ(θ0)

∣∣}dQ⊗n

+ lim sup
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
b∧ n(τ ◦ T̄ (Pn)− τ(θ0)

)2
dQ⊗n

=A1 + 2A2 +A3�
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For A1,

A1 ≤ b× lim sup
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
(x1�����xn)/∈Xn

n

dQ⊗n(A.9)

≤ b× lim sup
n→∞

sup
Q∈B̄H(P0�r/

√
n)

n∑
i=1

∫
xi /∈Xn

dQ

≤ b× lim sup
n→∞

sup
Q∈B̄H(P0�r/

√
n)

nm−η
n EQ

[
sup
θ∈Θ

∣∣g(x�θ)∣∣η] = 0�

where the first inequality follows from T(Pn)= T̄ (Pn) for all (x1� � � � � xn) ∈ X n
n ,

the second inequality follows from a set inclusion relation, the third inequal-
ity follows from the Markov inequality, and the equality follows from Assump-
tion 3.1(vii) and EQ[supθ∈Θ |g(x�θ)|η]<∞ for allQ ∈ B̄H(P0� r/

√
n). Similarly,

we have A2 = 0.
We now consider A3. Note that the mapping fb�n(Q)= ∫

b ∧ n(τ ◦ T̄ (Pn)−
τ(θ0))

2 dQ⊗n is continuous in Q ∈ BH(P0� r/
√
n) under the Hellinger distance

for each n, and the set BH(P0� r/
√
n) (not B̄H(P0� r/

√
n)) is compact under the

Hellinger distance for each n. Thus, there exists Q̃b�n ∈ BH(P0� r/
√
n) such that

supQ∈BH(P0�r/
√
n) fn(Q)= fn(Q̃b�n) for each n. Then we have

A3 ≤ lim sup
n→∞

sup
Q∈BH(P0�r/

√
n)

∫
b∧ n(τ ◦ T̄ (Pn)− τ(θ0)

)2
dQ⊗n

= lim sup
n→∞

∫
b∧ n(τ ◦ T̄ (Pn)− τ(θ0)

)2
dQ̃⊗n

b�n

=
∫
b∧ (ξ+ t̃b)2 dN

(
0�B∗)

≤ B∗ + t̃2b
≤ (

1 + 4r2
)
B∗�

where t̃b = lim supn→∞
√
n(τ◦ T̄ (Q̃b�n)−τ(θ0)), the first inequality follows from

B̄H(P0� r/
√
n) ⊆ BH(P0� r/

√
n), the second equality follows from Lemma A.8

(with Qn = Q̃b�n) and the continuous mapping theorem, the second inequality
follows from b ∧ c ≤ c and a direct calculation, and the last inequality follows
from Theorem 3.1(ii). Combining these results, the conclusion is obtained.

A.1.4. Proof of Theorem 3.3

A.1.4.1. Proof of (i)

Consider the parametric submodel Pθn�ζn defined in (A.4). Since � is uni-
formly continuous on R̄

p (by Assumption 3.2) and Ta is Fisher consis-
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tent,

b∧ �(√n{Sn − τ ◦ Ta(Pθn�ζn)
})

− b∧ �
(√

n
{
Sn − τ(θ0)

} −
(
∂τ(θ0)

∂θ

)′
t

)
→ 0�

uniformly in t, |t|< c and {Sn}n∈N for each c > 0 and b > 0. Thus,

inf
Sn∈S

sup
|t|≤c

∫
b∧ �(√n{Sn − τ ◦ Ta(Pθn�ζn)

})
dP⊗n

θn�ζn
(A.10)

= inf
Rn∈R

sup
|t|≤c

∫
b∧ �

(
Rn −

(
∂τ(θ0)

∂θ

)′
t

)
dP⊗n

θn�ζn
+ o(1)�

for each c > 0, where Rn = √
n{Sn − τ(θ0)} is a standardized estimator and

R = {√n{Sn − τ(θ0)} :Sn ∈ S}. By expanding the log likelihood ratio log
dP⊗n
θn�ζn

dP⊗n
0

around ζn = 0,

log
dP⊗n

θn�ζn

dP⊗n
0

= ζ ′
n

n∑
i=1

{
gn(xi� θn)−EP0

[
gn(x�θn)

]}

− ζ ′
n

n∑
i=1

gn(xi� θn)gn(xi� θn)ζn

2(1 + ζ̇ ′
ngn(xi� θn))

2

+ nζ ′
nEP0[gn(x�θn)]EP0[gn(x�θn)]′ζn

2
(

1 + ζ̈ ′
n

∫
gn(x�θn)

)2

= L1 −L2 +L3�

where ζ̇n and ζ̈n are points on the line joining ζn and 0. For L1, an expansion
of gn(x�θn) (in ζn) around θn = θ0 combined with Lemma A.4(i) implies that,
under P0,

L1 = −t ′G′Ω−1 1√
n

n∑
i=1

{
gn(xi� θn)−EP0

[
gn(x�θn)

]} + op(1)�

Also, Lemma A.4(i) and supx∈X |ζ ′
ngn(x�θn)| = o(1) imply that, under P0,

L2
p→ 1

2
t ′Σt� L3 → 0�

Therefore, in the terminology of Rieder (1994, Definition 2.2.9), the paramet-
ric model Pθn�ζn is asymptotically normal with the asymptotic sufficient statistic
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−G′Ω−1 1√
n

∑n

i=1{gn(xi� θn)−EP0[gn(x�θn)]} and the asymptotic covariance ma-
trix Σ. Note that this is essentially the LAN (local asymptotic normality) con-
dition introduced by LeCam. If Pθn�ζn is asymptotically normal in this sense,
we can directly apply the result of the minimax risk bound by Rieder (1994,
Theorem 3.3.8(a)), that is,

lim
b→∞

lim
c→∞

lim inf
n→∞

inf
Sn∈S

sup
|t|≤c

∫
b∧ �

(
Rn −

(
∂τ(θ0)

∂θ

)′
t

)
dP⊗n

θn�ζn
(A.11)

≥
∫
�dN

(
0�B∗)

(see also Theorem 1 in LeCam and Yang (1990)). From (A.10) and (A.11),

lim
b→∞

lim
c→∞

lim inf
n→∞

inf
Sn∈S

sup
|t|≤c

∫
b∧ �(√n{Sn − τ ◦ Ta(Pθn�ζn)

})
dP⊗n

θn�ζn

≥
∫
�dN

(
0�B∗)�

Finally, since EPθn�ζn [supθ∈Θ |g(x�θ)|η] < ∞ for all n large enough (by
supx∈X |ζ ′

ngn(x�θn)| = o(1) and Assumption 3.1(v)), we have Pθn�ζn ∈ B̄H(P0� r/√
n) for all t satisfying 1

4 t
′Σt ≤ r2 −ε with any ε ∈ (0� r2) and all n large enough.

Therefore, the set inclusion relation yields

lim
b→∞

lim
r→∞

lim inf
n→∞

inf
Sn∈S

sup
Q∈B̄H(P0�r/

√
n)

∫
b∧ �(√n{Sn − τ ◦ Ta(Q)

})
dQ⊗n

≥ lim
b→∞

lim
c→∞

lim inf
n→∞

inf
Sn∈S

sup
|t|≤c

∫
b∧ �(√n{Sn − τ ◦ Ta(Pθn�ζn)

})
dP⊗n

θn�ζn
�

which implies the conclusion.

A.1.4.2. Proof of (ii)

Pick arbitrary r > 0 and b > 0. Since T(Pn)= T̄ (Pn) for all (x1� � � � � xn) ∈ X n
n ,

lim
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
b∧ �(√n{τ ◦ T(Pn)− τ ◦ T̄ (Q)})dQ⊗n(A.12)

≤ lim
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
(x1�����xn)/∈Xn

n

b∧ �(√n{τ ◦ T(Pn)

− τ ◦ T̄ (Q)})dQ⊗n
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+ lim
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
(x1�����xn)∈Xn

n

b∧ �(√n{τ ◦ T̄ (Pn)

− τ ◦ T̄ (Q)})dQ⊗n�

An argument similar to (A.9) implies that the first term of (A.12) is zero.
From X n

n ⊆ X n and B̄H(P0� r/
√
n)⊆ BH(P0� r/

√
n), the second term of (A.12)

is bounded from above by

lim
n→∞

sup
Q∈BH(P0�r/

√
n)

∫
b∧ �(√n{τ ◦ T̄ (Pn)− τ ◦ T̄ (Q)})dQ⊗n

=
∫
b∧ �dN(

0�B∗)�
where the equality follows from Lemma A.8, the uniform continuity of � over
R̄
p, and compactness of BH(P0� r/

√
n) under the Hellinger distance. Let b→

∞ and the conclusion follows.

A.2. AUXILIARY LEMMAS

LEMMA A.1: Suppose that Assumption 3.1 holds. Then
(i) for each r > 0, T̄ (Q) exists for all Q ∈ BH(P0� r/

√
n) and all n large

enough,
(ii) T̄Qn → θ0 as n→ ∞ for each r > 0 and sequence Qn ∈ BH(P0� r/

√
n).

PROOF:
Proof of (i). The proof is split into several steps. Let G(θ�Q) be the convex

hull of the support of g(x�θ) under x∼Q.
In the first step, we show that 0 ∈ int G(θ0�P0). If 0 /∈ G(θ0�P0), then we have

EP0[g(x�θ0)] �= 0, which is a contradiction. Thus, it is enough to show that 0
is not on the boundary of G(θ0�P0). Suppose 0 is indeed on the boundary of
G(θ0�P0). In this case, we have two cases: (a) there exists a constant m-vector
a �= 0 such that a′g ≥ 0 for all g ∈ G(θ0�P0) and P0{g ∈ G(θ0�P0) :a′g > 0}> 0,
or (b) there exists a �= 0 such that a′g = 0 for all g ∈ G(θ0�P0). For the case
(a), we have a′EP0[g(x�θ0)]> 0, which contradicts with EP0[g(x�θ0)] = 0. For
the case (b), we have a′EP0[g(x�θ0)g(x�θ0)

′]a= 0, which contradicts with As-
sumption 3.1(vi).

In the second step, we show that, for each r > 0, there exists δ > 0
such that 0 ∈ int G(θ�Q) for all |θ − θ0| ≤ δ and all Q ∈ BH(P0� δ). Pick
any r > 0. From the first step, we can find m + 1 points {g̃1� � � � � g̃m+1} =
{g(x̃1� θ0)� � � � � g(x̃m+1� θ0)} in the support of g(x�θ0) under x∼ P0 such that 0
is interior of the convex hull of {g̃1� � � � � g̃m+1}. From the property of the convex
hull (Rockafeller (1970), Corollary 2.3.1), we can take cr > 0 such that, for any
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points {g1� � � � � gm+1} satisfying |gj − g̃j| ≤ cr for j = 1� � � � �m+1, the interior of
the convex hull of {g1� � � � � gm+1} contains 0. Let us take any j = 1� � � � �m+ 1.
For the second step, it is sufficient to show that there exists δj > 0 such that
Q{|g(x�θ) − g̃j| ≤ cr} > 0 for all |θ − θ0| ≤ δj and all Q ∈ BH(P0� δj). Sup-
pose this is false, that is, for any δj > 0, we can take a pair (Qj�θj) such
that H(Qj�P0) ≤ δj , |θj − θ0| ≤ δj , and Qj{|g(x�θj) − g̃j| ≤ cr} = 0. Then we
have

δj ≥H(Qj�P0)≥
√∫

{|g(x�θj)−g̃j |≤cr }
(
√
dQj −

√
dP0)2

=
√
P0

{∣∣g(x�θj)− g̃j
∣∣ ≤ cr

}
�

On the other hand, by Assumption 3.1(iv), the dominated convergence theo-
rem guarantees

P0

{∣∣g(x�θj)− g̃j
∣∣ ≤ cr

}
→ P0

{∣∣g(x�θ0)− g̃j
∣∣ ≤ cr

}
> 0 as θj → θ0�

Since δj can be arbitrarily small, we have a contradiction. This completes the
second step.

In the third step, we show that, for each r > 0, there exists δ > 0 such
that Rn(θ�Q) = infP∈P̄θ�P�QH(P�Q) has a minimum on {θ ∈ Θ : |θ − θ0| ≤ δ}
for all Q ∈ BH(P0�

r√
n
) and all n large enough. Let us take δ > 0 to satisfy

the conclusion of the second step. By Assumption 3.1(iv), we can take Nδ

to satisfy max1≤j≤m+1 supθ∈Θ�|θ−θ0|≤δ |g(x̃j� θ)| ≤ mNδ . Thus, letting Gn(θ�Q) be
the convex hull of the support of gn(x�θ) under x ∼ Q, the second step also
guarantees that, for each r > 0, there exists δ > 0 such that 0 ∈ int Gn(θ�Q)
for all |θ − θ0| ≤ δ, all Q ∈ BH(P0� δ), and all n ≥ Nδ. Based on this, the
convex duality result in Borwein and Lewis (1993, Theorem 3.4) implies
Rn(θ�Q) = supγ∈Rm

− ∫
1

(1+γ′gn(x�θ)) dQ for all |θ − θ0| ≤ δ, all Q ∈ BH(P0� δ),
and all n ≥ Nδ. Since supγ∈Rm

− ∫
1

(1+γ′gn(x�θ)) dQ is continuous at all θ with
|θ − θ0| ≤ δ (by the maximum theorem), the Weierstrass theorem completes
the third step.

Finally, based on the third step, it is sufficient for the conclusion to show that,
for every r > 0, there exists N ∈ N such that Rn(θ0�Q) < infθ∈Θ:|θ−θ0|>δ Rn(θ�Q)
for all n ≥ N and all Q ∈ BH(P0�

r√
n
). Pick any r > 0. We first derive an up-

per bound of Rn(θ0�Q) = supγ∈Rm
− ∫

1
(1+γ′gn(x�θ0))

dQ. From Lemma A.5(ii),
γn(θ0�Q) = arg maxγ∈Rm − ∫

1
(1+γ′gn(x�θ0))

dQ exists and supx∈X |γn(θ0�Q)
′gn(x�
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θ0)| ≤ 1
2 for all n large enough and allQ ∈ BH(P0�

r√
n
). Thus, by a second-order

expansion around γn(θ0�Q)= 0, we have

Rn(θ0�Q)≤ −1 + γn(θ0�Q)
′
∫
gn(x�θ0)dQ�

Define C∗ = infθ∈Θ:|θ−θ0|>δ |EP0[g(x�θ)]|2/(1 + |EP0[g(x�θ)]|) > 0. From Lem-
ma A.5 and mnn

−1/2 → 0, it holds that

mn

(
R(θ0�Q)+ 1

) ≤mn

∣∣∣∣γn(θ0�Q)
′
∫
gn(x�θ0)dQ

∣∣∣∣< C∗

4
�(A.13)

for all n large enough and all Q ∈ BH(P0�
r√
n
). We now derive a lower bound

of Rn(θ�Q) with |θ− θ0|> δ. Pick any θ ∈Θ such that |θ− θ0|> δ, and take
any n large enough and Q ∈ BH(P0�

r√
n
) to satisfy (A.13). If 0 /∈ Gn(θ�Q), then

Rn(θ�Q)= +∞. Thus, we concentrate on the case of 0 ∈ Gn(θ�Q), which guar-
antees Rn(θ�Q)= supγ∈Rm

− ∫
1

(1+γ′gn(x�θ)) dQ (Borwein and Lewis (1993), The-
orem 3.4). Let γ0(θ)=EP0[g(x�θ)]/(1 + |EP0[g(x�θ)]|). Observe that

Rn(θ�Q) ≥ −
∫

1
(1 +m−1

n γ0(θ)′gn(x�θ))
dQ

= −1 +m−1
n γ0(θ)

′
∫
gn(x�θ)dQ

−m−2
n

∫
(γ0(θ)

′gn(x�θ))2

(1 + t(x)m−1
n γ0(θ)′gn(x�θ))3

dQ�

where the second equality follows from an expansion (t(x) ∈ (0�1) for al-
most every x under Q). From an argument similar to Lemma A.5, with
supθ∈Θ |γ0(θ)| ≤ 1 and mn → ∞,

sup
θ∈Θ

∣∣∣∣
∫
gn(x�θ)dQ−

∫
g(x�θ)dP0

∣∣∣∣ ≤ C∗

4
�

m−1
n sup

θ∈Θ

∣∣∣∣
∫

(γ0(θ)
′gn(x�θ))2

(1 + t1(x)m−1
n γ0(θ)′gn(x�θ))3

dQ

∣∣∣∣ ≤ C∗

4
�

for all n large enough and all Q ∈ BH(P0�
r√
n
). Combining these results and

using the definition of C∗, we obtain

inf
θ∈Θ:|θ−θ0|>δ

mn

(
Rn(θ�Q)+ 1

) ≥ C∗

2
�(A.14)

for all n large enough and all Q ∈ BH(P0�
r√
n
). Therefore, (A.13) and (A.14)

complete the proof of the final step.
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Proof of (ii). Pick arbitrary r > 0 and sequenceQn ∈ BH(P0� r/
√
n). From the

triangle inequality,

sup
θ∈Θ

∣∣EQn[gn(x�θ)] −EP0

[
g(x�θ)

]∣∣(A.15)

≤ sup
θ∈Θ

∣∣EQn[gn(x�θ)] −EP0

[
gn(x�θ)

]∣∣
+ sup

θ∈Θ

∣∣EP0

[
g(x�θ)I{x /∈ Xn}

]∣∣�
The first term of (A.15) satisfies

sup
θ∈Θ

∣∣EQn[gn(x�θ)] −EP0

[
gn(x�θ)

]∣∣
≤ sup

θ∈Θ

∣∣∣∣
∫
gn(x�θ)

{
dQ1/2

n − dP1/2
0

}2
∣∣∣∣

+ 2 sup
θ∈Θ

∣∣∣∣
∫
gn(x�θ)dP

1/2
0

{
dQ1/2

n − dP1/2
0

}∣∣∣∣
≤mn

r2

n
+ 2

√
EP0

[
sup
θ∈Θ

∣∣g(x�θ)∣∣2
] r√
n

=O(
n−1/2

)
�

where the first inequality follows from the triangle inequality, the second in-
equality follows from Qn ∈ BH(P0� r/

√
n) and the Cauchy–Schwarz inequality,

and the equality follows from Assumption 3.1(v) and (vii). The second term of
(A.15) satisfies

sup
θ∈Θ

∣∣EP0

[
g(x�θ)I{x /∈ Xn}

]∣∣(A.16)

≤
(∫

sup
θ∈Θ

∣∣g(x�θ)∣∣η dP0

)1/η(∫
I{x /∈ Xn}dP0

)(η−1)/η

≤
(
EP0

[
sup
θ∈Θ

∣∣g(x�θ)∣∣η])1/η(
m−η
n EP0

[
sup
θ∈Θ

∣∣g(x�θ)∣∣η])(η−1)/η

= o(n−1/2
)
�

where the first inequality follows from the Hölder inequality, the second in-
equality follows from the Markov inequality, and the equality follows from
Assumption 3.1(v) and (vii). Combining these results, we obtain the uniform
convergence supθ∈Θ |EQn[gn(x�θ)]−EP0[g(x�θ)]| → 0. Therefore, from the tri-
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angle inequality and |EQn[gn(x� T̄Qn)]| =O(n−1/2) (Lemma A.6(i)),

∣∣EP0

[
g(x� T̄Qn)

]∣∣
≤ ∣∣EP0

[
g(x� T̄Qn)

] −EQn
[
gn(x� T̄Qn)

]∣∣ + ∣∣EQn[gn(x� T̄Qn)]∣∣ → 0�

The conclusion follows from Assumption 3.1(iii). Q.E.D.

LEMMA A.2: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Qn ∈ BH(P0� r/

√
n),

√
n(T̄Qn − θ0)= −√

nΣ−1

∫
Λn dQn + o(1)�(A.17)

PROOF: The proof is based on Rieder (1994, proofs of Theorems 6.3.4 and
Theorem 6.4.5). Pick arbitrary r > 0 and Qn ∈ BH(P0� r/

√
n). Observe that

∥∥∥∥dQ1/2
n − dP̄1/2

θ0�Qn
+ 1

2
(T̄Qn − θ0)

′Λn dQ
1/2
n

∥∥∥∥
2

(A.18)

=
∥∥∥∥dQ1/2

n − dP̄1/2
θ0�Qn

+ 1
2
ψ′
n�Qn
Λn dQ

1/2
n

∥∥∥∥
2

+
∥∥∥∥1

2
(T̄Qn − θ0 −ψn�Qn)′Λn dQ

1/2
n

∥∥∥∥
2

+
{∫ (

dQ1/2
n − dP̄1/2

θ0�Qn
+ 1

2
ψ′
n�Qn
Λn dQ

1/2
n

)
Λ′
n dQ

1/2
n

}

× (T̄Qn − θ0 −ψn�Qn)

=
∥∥∥∥dQ1/2

n − dP̄1/2
θ0�Qn

+ 1
2
ψ′
n�Qn
Λn dQ

1/2
n

∥∥∥∥
2

+
∥∥∥∥1

2
(T̄Qn − θ0 −ψn�Qn)′Λn dQ

1/2
n

∥∥∥∥
2

�

where the second equality follows from

∫ {
dQ1/2

n − dP̄1/2
θ0�Qn

+ 1
2
ψ′
n�Qn
Λn dQ

1/2
n

}
Λ′
n dQ

1/2
n

=
∫
Λ′
n

{
dQ1/2

n − dP̄1/2
θ0�Qn

}
dQ1/2

n + 1
2
ψ′
n�Qn

∫
ΛnΛ

′
n dQn = 0�
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The left hand side of (A.18) satisfies

∥∥∥∥dQ1/2
n − dP̄1/2

θ0�Qn
+ 1

2
(T̄Qn − θ0)

′Λn dQ
1/2
n

∥∥∥∥(A.19)

≤ ∥∥dQ1/2
n − dP̄1/2

T̄Qn �Qn

∥∥ + o(|T̄Qn − θ0|
) + o(n−1/2

)
≤ ∥∥dQ1/2

n − dP̄1/2
θ0+ψn�Qn �Qn

∥∥ + o(|T̄Qn − θ0|
) + o(n−1/2

)
≤

∥∥∥∥dQ1/2
n − dP̄1/2

θ0�Qn
+ 1

2
ψ′
n�Qn
Λn dQ

1/2
n

∥∥∥∥
+ o(|T̄Qn − θ0|

) + o(|ψn�Qn |) + o(n−1/2
)
�

where the first inequality follows from the triangle inequality and Lem-
ma A.3(i), the second inequality follows from

T̄Qn = arg min
θ∈Θ

∥∥dQ1/2
n − dP̄1/2

θ�Qn

∥∥�
and the third inequality follows from the triangle inequality and Lem-
ma A.3(ii). From (A.18) and (A.19),

∣∣∣∣
∥∥∥∥dQ1/2

n − dP̄1/2
θ0�Qn

+ 1
2
ψ′
n�Qn
Λn dQ

1/2
n

∥∥∥∥
2

+
∥∥∥∥1

2
(T̄Qn − θ0 −ψn�Qn)′Λn dQ

1/2
n

∥∥∥∥
2∣∣∣∣

1/2

≤
∥∥∥∥dQ1/2

n − dP̄1/2
θ0�Qn

+ 1
2
ψ′
n�Qn
Λn dQ

1/2
n

∥∥∥∥
+ o(|T̄Qn − θ0|

) + o(|ψn�Qn |) + o(n−1/2
)
�

This implies that

o
(|T̄Qn − θ0|

) + o(|ψn�Qn |) + o(n−1/2
)

(A.20)

≥
√

1
4
(T̄Qn − θ0 −ψn�Qn)′

∫
ΛnΛ′

n dQn(T̄Qn − θ0 −ψn�Qn)

≥ C|T̄Qn − θ0 −ψn�Qn |�

for all n large enough, where the second inequality follows from Lemma A.5(i)
and Assumption 3.1(vi).
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We now analyze ψn�Qn . From the definition of ψn�Qn ,

ψn�Qn = −2
{(∫

ΛnΛ
′
n dQn

)−1

−Σ−1

}∫
Λn

{
dQ1/2

n − dP̄1/2
θ0�Qn

}
dQ1/2

n(A.21)

− 2Σ−1

∫
Λn

{
dQ1/2

n − dP̄1/2
θ0�Qn

}
dQ1/2

n �

From this and Lemma A.5(i), the first term of (A.21) is o(n−1/2). The second
term of (A.21) satisfies

−2Σ−1

∫
Λn

{
dQ1/2

n − dP̄1/2
θ0�Qn

}
dQ1/2

n

= −2Σ−1G′Ω−1

(∫
gn(x�θ0)gn(x�θ0)

′ dQn

)
γn(θ0�Qn)

+ 2Σ−1G′Ω−1

(∫
γn(θ0�Qn)

′gn(x�θ0)

1 + γn(θ0�Qn)′gn(x�θ0)

× gn(x�θ0)gn(x�θ0)
′ dQn

)
γn(θ0�Qn)

= −Σ−1G′Ω−1

{∫
gn(x�θ0)dQn

+ 1
2

∫
�n(x�θ0�Qn)gn(x�θ0)dQn

}
+ o(n−1/2

)

= −Σ−1

∫
Λn dQn + o(n−1/2

)
�

where the first equality follows from (A.22), the second equality follows from
(A.23) and Lemma A.5, and the third equality follows from Lemma A.5.
Therefore,

√
nψn�Qn = −√

nΣ−1

∫
Λn dQn + o(1)�

which also implies |ψn�Qn | =O(n−1/2) (by Lemma A.5(i)). Combining this with
(A.20),

√
n(T̄Qn − θ0)= √

nψn�Qn + o(√n|T̄Qn − θ0|
) + o(1)�

By solving this equation for
√
n(T̄Qn − θ0), the conclusion is obtained. Q.E.D.

LEMMA A.3: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Qn ∈ BH(P0� r/

√
n),



ROBUSTNESS AND MOMENT RESTRICTIONS 17

(i) ‖dP̄1/2
T̄Qn �Qn

− dP̄1/2
θ0�Qn

+ 1
2(T̄Qn − θ0)

′Λn dQ
1/2
n ‖ = o(|T̄Qn − θ0|)+ o(n−1/2),

(ii) ‖dP̄1/2
θ0+ψn�Qn �Qn − dP̄1/2

θ0�Qn
+ 1

2ψ
′
n�Qn
Λn dQ

1/2
n ‖ = o(|ψn�Qn |)+ o(n−1/2).

PROOF:
Proof of (i). From the convex duality of partially finite programming

(Borwein and Lewis (1993)), the Radon–Nikodym derivative dP̄θ�Q/dQ is writ-
ten as

dP̄θ�Q

dQ
= 1
(1 + γn(θ�Q)′gn(x�θ))2

�(A.22)

for each n ∈ N, θ ∈Θ, and Q ∈ M, where γn(θ�Q) solves

0 =
∫

gn(x�θ)

(1 + γn(θ�Q)′gn(x�θ))2
dQ(A.23)

= EQ
[
gn(x�θ)

{
1 − 2γn(θ�Q)′gn(x�θ)+�n(x�θ�Q)

}]
�

with

�n(x�θ�Q)= 3(γn(θ�Q)′gn(x�θ))2 + 2(γn(θ�Q)′gn(x�θ))3

(1 + γn(θ�Q)′gn(x�θ))2
�

Denote tn = T̄Qn − θ0. Pick arbitrary r > 0 and sequence Qn ∈ BH(P0� r/
√
n).

From the triangle inequality and (A.22),

∥∥∥∥dP̄1/2
T̄Qn �Qn

− dP̄1/2
θ0�Qn

+ 1
2
t ′nΛn dQ

1/2
n

∥∥∥∥
≤

∥∥∥∥{
γn(θ0�Qn)

′gn(x�θ0)− γn(T̄Qn�Qn)
′gn(x� T̄Qn)

}
dQ1/2

n

+ 1
2
t ′nΛn dQ

1/2
n

∥∥∥∥
+

∥∥∥∥{
γn(θ0�Qn)

′gn(x�θ0)− γn(T̄Qn�Qn)
′gn(x� T̄Qn)

}

×
{

1
(1 + γn(T̄Qn�Qn)′gn(x� T̄Qn))(1 + γn(θ0�Qn)′gn(x�θ0))

− 1
}
dQ1/2

n

∥∥∥∥ = T1 + T2�
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For T2, Lemmas A.5 and A.6 imply T2 = o(n−1/2). For T1, the triangle inequality
and (A.23) yield

T1 ≤
∥∥∥∥
{
−1

2
EQn

[
gn(x� T̄Qn)

]′
EQn

[
gn(x� T̄Qn)gn(x� T̄Qn)

′]−1
gn(x� T̄Qn)

+ 1
2
EQn

[
gn(x�θ0)

]′
EQn

[
gn(x�θ0)gn(x�θ0)

′]−1
gn(x�θ0)

+ 1
2
t ′nΛn

}
dQ1/2

n

∥∥∥∥
+ ∥∥EQn[�n(x�θ0�Qn)gn(x�θ0)

]′
EQn

[
gn(x�θ0)gn(x�θ0)

′]−1

× gn(x�θ0)dQ
1/2
n

∥∥
+ ∥∥EQn[�n(x� T̄Qn�Qn)gn(x� T̄Qn)

]′
EQn

[
gn(x� T̄Qn)gn(x� T̄Qn)

′]−1

× gn(x�θ0)dQ
1/2
n

∥∥
= T11 + T12 + T13�

Lemmas A.5 and A.6 imply that T12 = o(n−1/2) and T13 = o(n−1/2). For T11,
expansions of gn(x� T̄Qn) around T̄Qn = θ0 yield

T11 ≤
∥∥∥∥−1

2
EQn

[
gn(x� T̄Qn)

]′

× (
EQn

[
gn(x� T̄Qn)gn(x� T̄Qn)

′]−1 −EQn
[
gn(x�θ0)gn(x�θ0)

′]−1)
× gn(x� T̄Qn)dQ1/2

n

∥∥∥∥
+

∥∥∥∥−1
2
EQn

[
gn(x� T̄Qn)

]′
EQn

[
gn(x�θ0)gn(x�θ0)

′]−1

× {
gn(x� T̄Qn)− gn(x�θ0)

}
dQ1/2

n

∥∥∥∥
+

∥∥∥∥−1
2
t ′n

(∫
∂gn(x� θ̇)

∂θ′ dQn −G
)′
EQn

[
gn(x�θ0)gn(x�θ0)

′]−1

× gn(x�θ0)dQ
1/2
n

∥∥∥∥
+

∥∥∥∥1
2
t ′nG

′(Ω−1 −EQn
[
gn(x�θ0)gn(x�θ0)

′]−1)
gn(x�θ0)dQ

1/2
n

∥∥∥∥
= o

(
n−1/2

) + o(tn)�
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where θ̇ is a point on the line joining θ0 and T̄Qn , and the equality follows from
Lemmas A.5(i) and A.6(i).

Proof of (ii). Similar to the proof of Part (i) of this lemma. Q.E.D.

LEMMA A.4: Suppose that Assumption 3.1 hold. Then, for each t ∈ R
p,

(i) |EP0[gn(x�θ0)]| = o(n−1/2), |EP0[gn(x�θn)]| = O(n−1/2), |EP0[gn(x�θn)×
gn(x�θn)

′] −Ω| = o(1), and |EP0[∂gn(x�θn)/∂θ′] −G| = o(1),
(ii) γn(θn�P0)= arg maxγ∈Rm − ∫

1
(1+γ′gn(x�θn)) dP0 exists for all n large enough,

|γn(θn�P0)| =O(n−1/2), and supx∈X |γn(θn�P0)
′gn(x�θn)| = o(1).

PROOF:
Proof of (i): Proof of the first statement. The same argument as (A.16) with

Assumption 3.1(iii) yields the conclusion.
Proof of the second statement. Pick an arbitrary t ∈ R

p. From the triangle
inequality,∣∣EP0

[
gn(x�θn)

]∣∣ ≤ ∣∣EP0

[
g(x�θn)I{x /∈ Xn}

]∣∣ + ∣∣EP0

[
g(x�θn)

]∣∣�(A.24)

By the same argument as (A.16) and EP0[|g(x�θn)|η] < ∞ (from Assump-
tion 3.1(v)), the first term of (A.24) is o(n−1/2). The second term of (A.24)
satisfies

∣∣EP0

[
g(x�θn)

]∣∣ ≤EP0

[
sup
θ∈N

∣∣∣∣∂g(x�θ)∂θ′

∣∣∣∣
]∣∣∣∣ t√n

∣∣∣∣ =O(
n−1/2

)
�

for all n large enough, where the inequality follows from a Taylor expansion
around t = 0 and Assumption 3.1(iii), and the equality follows from Assump-
tion 3.1(v). Combining these results, the conclusion is obtained.

Proof of the third statement. Pick an arbitrary t ∈ R
p. From the triangle in-

equality, ∣∣EP0

[
gn(x�θn)gn(x�θn)

′] −Ω∣∣
≤ ∣∣EP0

[
gn(x�θn)gn(x�θn)

′] −EP0

[
g(x�θn)g(x�θn)

′]∣∣
+ ∣∣EP0

[
g(x�θn)g(x�θn)

′] −Ω∣∣�
The first term is o(n−1/2) by the same argument as (A.16) and the second term
converges to zero by the continuity of g(x�θ) at θ0.

Proof of the fourth statement. Similar to the proof of the third statement.
Proof of (ii). Pick an arbitrary t ∈ R

p. Let Γn = {γ ∈ R
m : |γ| ≤ an} with a

positive sequence {an}n∈N satisfying anmn → 0 and ann1/2 → ∞. Observe that

sup
γ∈Γn�x∈X �θ∈Θ

∣∣γ′gn(x�θ)
∣∣ ≤ anmn → 0�(A.25)
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Since Rn(P0� θn�γ) is twice continuously differentiable with respect to γ and
Γn is compact, γ̃ = arg maxγ∈Γn Rn(P0� θn�γ) exists for each n ∈ N. A Taylor
expansion around γ̃ = 0 yields

−1 = Rn(P0� θn�0)≤Rn(P0� θn� γ̃)(A.26)

= −1 + γ̃′EP0

[
gn(x�θn)

] − γ̃′EP0

[
gn(x�θn)gn(x�θn)

′

(1 + γ̇′gn(x�θn))3

]
γ̃

≤ −1 + γ̃′EP0

[
gn(x�θn)

] −Cγ̃′EP0

[
gn(x�θn)gn(x�θn)

′]γ̃
≤ −1 + |γ̃|∣∣EP0

[
gn(x�θn)

]∣∣ −C|γ̃|2�

for all n large enough, where γ̇ is a point on the line joining 0 and γ̃, the
second inequality follows from (A.25), and the last inequality follows from
Lemma A.4(i) and Assumption 3.1(vi). Thus, Lemma A.4(i) implies

C|γ̃| ≤ ∣∣EP0

[
gn(x�θn)

]∣∣ =O(
n−1/2

)
�(A.27)

From ann
1/2 → ∞, γ̃ is an interior point of Γn and satisfies the first-order

condition ∂Rn(Qn�θ0� γ̃)/∂γ = 0 for all n large enough. Since Rn(Qn�θ0�γ)
is concave in γ for all n large enough, γ̃ = arg maxγ∈Rm Rn(P0� θn�γ) for all n
large enough and the first statement is obtained. Thus, the second statement is
obtained from (A.27). The third statement follows from (A.27) and Assump-
tion 3.1(vii). Q.E.D.

LEMMA A.5: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Qn ∈ BH(P0� r/

√
n),

(i) |EQn[gn(x�θ0)]| =O(n−1/2), and |EQn[gn(x�θ0)gn(x�θ0)
′] −Ω| = o(1),

(ii) γn(θ0�Qn)= arg maxγ∈Rm − ∫
1

(1+γ′gn(x�θ0))
dQn exists for all n large enough,

and |γn(θ0�Qn)| =O(n−1/2), and supx∈X |γn(θ0�Qn)
′gn(x�θ0)| = o(1).

PROOF:
Proof of (i): Proof of the first statement. Pick any r > 0 and sequence Qn ∈

BH(P0� r/
√
n). We have∣∣EQn[gn(x�θ0)

]∣∣
≤

∣∣∣∣
∫
gn(x�θ0){dQn − dP0}

∣∣∣∣ + ∣∣EP0

[
gn(x�θ0)

]∣∣
≤

∣∣∣∣
∫
gn(x�θ0)

{
dQ1/2

n − dP1/2
0

}2
∣∣∣∣

+ 2
∣∣∣∣
∫
gn(x�θ0)dP

1/2
0

{
dQ1/2

n − dP1/2
0

}∣∣∣∣ + o(n−1/2
)
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≤mn

r2

n
+ 2EP0

[∣∣g(x�θ0)
∣∣2] r√

n
+ o(n−1/2

)
=O(

n−1/2
)
�

where the first and second inequalities follow from the triangle inequality and
Lemma A.4(i), the third inequality follows from the Cauchy–Schwarz inequal-
ity and Qn ∈ BH(P0� r/

√
n), and the equality follows from Assumption 3.1(v)

and (vii).
Proof of the second statement. Pick arbitrary r > 0 and sequence Qn ∈

BH(P0� r/
√
n). From the triangle inequality,∣∣EQn[gn(x�θ0)gn(x�θ0)

′] −Ω∣∣(A.28)

≤ ∣∣EQn[gn(x�θ0)gn(x�θ0)
′] −EP0

[
gn(x�θ0)gn(x�θ0)

′]∣∣
+ ∣∣EP0

[
g(x�θ0)g(x�θ0)

′
I{x /∈ Xn}

]∣∣�
The first term of the right hand side of (A.28) satisfies∣∣EQn[gn(x�θ0)gn(x�θ0)

′] −EP0

[
gn(x�θ0)gn(x�θ0)

′]∣∣
≤

∣∣∣∣
∫
gn(x�θ0)gn(x�θ0)

′{dQ1/2
n − dP1/2

0

}2
∣∣∣∣

+ 2
∣∣∣∣
∫
gn(x�θ0)gn(x�θ0)

′ dP1/2
0

{
dQ1/2

n − dP1/2
0

}∣∣∣∣
≤m2

n

r2

n
+ 2EP0

[∣∣g(x�θ0)
∣∣4] r√

n
= o(1)�

where the first inequality follows from the triangle inequality, the second in-
equality follows from the Cauchy–Schwarz inequality and Qn ∈ BH(P0� r/

√
n),

and the equality follows from Assumption 3.1(v) and (vii). The second term of
(A.28) satisfies∣∣EP0

[
g(x�θ0)g(x�θ0)

′
I{x /∈ Xn}

]∣∣
≤

(∫ ∣∣g(x�θ0)g(x�θ0)
′∣∣1+δ

dP0

)1/(1+δ)(∫
I{x /∈ Xn}dP0

)δ/(1+δ)

≤ (
EP0

[∣∣g(x�θ0)
∣∣2+δ])1/(1+δ)(

m−η
n EP0

[∣∣g(x�θ0)
∣∣η])δ/(1+δ) = o(1)�

for sufficiently small δ > 0, where the first inequality follows from the Hölder
inequality, the second inequality follows from the Markov inequality, and the
equality follows from Assumption 3.1(vii).

Proof of (ii). Similar to the proof of Lemma A.4(ii). Repeat the same argu-
ment with Rn(Qn�θ0�γ) instead of Rn(P0� θn�γ). Q.E.D.
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LEMMA A.6: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Qn ∈ BH(P0� r/

√
n),

(i) |EQn[gn(x� T̄Qn)]| = O(n−1/2), |EQn[gn(x� T̄Qn)gn(x� T̄Qn)′] − Ω| = o(1),
and |EQn[∂gn(x� T̄Qn)/∂θ′] −G| = o(1),

(ii) γn(T̄Qn�Qn) = arg maxγ∈Rm − ∫
1

(1+γ′gn(x�T̄Qn ))
dQn exists for all n large

enough, |γn(T̄Qn�Qn)| =O(n−1/2), and supx∈X |γn(T̄Qn�Qn)
′gn(x� T̄Qn)| = o(1).

PROOF:
Proof of (i): Proof of the first statement. Pick any r > 0 and sequence Qn ∈

BH(P0� r/
√
n). Define γ̃ = EQn [gn(x�T̄Qn )]√

n|EQn [gn(x�T̄Qn )]|
. Since |γ̃| = n−1/2,

sup
x∈X �θ∈Θ

∣∣γ̃′gn(x�θ)
∣∣ ≤ n−1/2mn → 0�(A.29)

Observe that∣∣EQn[gn(x� T̄Qn)gn(x� T̄Qn)′]∣∣(A.30)

≤
∫

sup
θ∈Θ

∣∣gn(x�θ)∣∣2{
dQ1/2

n − dP1/2
0

}2

+ 2
∫

sup
θ∈Θ

∣∣gn(x�θ)∣∣2
dP1/2

0

{
dQ1/2

n − dP1/2
0

}
+EP0

[
sup
θ∈Θ

∣∣gn(x�θ)∣∣2
]

≤m2
n

r2

n
+ 2mn

√
EP0

[
sup
θ∈Θ

∣∣g(x�θ)∣∣2
] r√
n

+EP0

[
sup
θ∈Θ

∣∣g(x�θ)∣∣2
]

≤ CEP0

[
sup
θ∈Θ

∣∣g(x�θ)∣∣2
]
�

for all n large enough, where the first inequality follows from the triangle in-
equality, the second inequality follows from the Cauchy–Schwarz inequality
andQn ∈ BH(P0� r/

√
n), and the last inequality follows from Assumption 3.1(v)

and (vii). Thus, an expansion around γ̃ = 0 yields

Rn(Qn� T̄Qn� γ̃)(A.31)

= −1 + γ̃′EQn
[
gn(x� T̄Qn)

] − γ̃′EQn

[
gn(x� T̄Qn)gn(x� T̄Qn)

′

(1 + γ̇′gn(x� T̄Qn))3

]
γ̃

≥ −1 + n−1/2
∣∣EQn[gn(x� T̄Qn)]∣∣ −Cγ̃′EQn

[
gn(x� T̄Qn)gn(x� T̄Qn)

′]γ̃
≥ −1 + n−1/2

∣∣EQn[gn(x� T̄Qn)]∣∣ −Cn−1�
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for all n large enough, where γ̇ is a point on the line joining 0 and γ̃,
the first inequality follows from (A.29), and the second inequality follows
from γ̃′γ̃ = n−1 and (A.30). From the duality of partially finite programming
(Borwein and Lewis (1993)), γn(T̄Qn�Qn) and T̄Qn are written as γn(T̄Qn�Qn)=
arg maxγ∈Rm Rn(Qn� T̄Qn�γ) and T̄Qn = arg minθ∈Θ Rn(Qn�θ�γn(θ�Qn)). There-
fore, from (A.31),

−1 + n−1/2
∣∣EQn[gn(x� T̄Qn)]∣∣ −Cn−1(A.32)

≤Rn(Qn� T̄Qn� γ̃)≤Rn
(
Qn� T̄Qn�γn(T̄Qn�Qn)

)
≤Rn

(
Qn�θ0�γn(θ0�Qn)

)
�

By an argument similar to (A.26), combined with |γn(θ0�Qn)| = O(n−1/2) and
|EQn[gn(x�θ0)]| =O(n−1/2) (by Lemma A.5), we have

Rn
(
Qn�θ0�γn(θ0�Qn)

)
(A.33)

≤ −1 + ∣∣γn(θ0�Qn)
∣∣∣∣EQn[gn(x�θ0)

]∣∣ −C∣∣γn(θ0�Qn)
∣∣2

= −1 +O(
n−1

)
�

From (A.32) and (A.33), the conclusion follows.
Proof of the second statement. Similar to the proof of the second statement of

Lemma A.5(i).
Proof of the third statement. Pick arbitrary r > 0 and sequence Qn ∈

BH(P0� r/
√
n). From the triangle inequality,∣∣EQn[∂gn(x� T̄Qn)/∂θ′] −G∣∣(A.34)

≤ ∣∣EQn[∂gn(x� T̄Qn)/∂θ′] −EP0

[
∂gn(x� T̄Qn)/∂θ

′]∣∣
+ ∣∣EP0

[
I{x /∈ Xn}∂g(x� T̄Qn)/∂θ′]∣∣ + ∣∣EP0

[
∂g(x� T̄Qn)/∂θ

′] −G∣∣�
The first term of (A.34) satisfies∣∣EQn[∂gn(x� T̄Qn)/∂θ′] −EP0

[
∂gn(x� T̄Qn)/∂θ

′]∣∣
≤

∣∣∣∣
∫
∂gn(x� T̄Qn)/∂θ

′{dQ1/2
n − dP1/2

0

}2
∣∣∣∣

+ 2
∣∣∣∣
∫
∂gn(x� T̄Qn)/∂θ

′ dP1/2
0

{
dQ1/2

n − dP1/2
0

}∣∣∣∣
≤ sup

x∈Xn�θ∈N

∣∣∂gn(x�θ)/∂θ′∣∣ r2

n
+ 2EP0

[
sup
θ∈N

∣∣∂gn(x�θ)/∂θ′∣∣2
] r√
n

= o(1)�
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where the first inequality follows from the triangle inequality, the second in-
equality follows from the Cauchy–Schwarz inequality, and the equality follows
from Assumption 3.1(v) and (vii). The second term of (A.34) is o(1) by the
same argument as (A.16). The third term of (A.34) is o(1) by the continuity of
∂g(x�θ)/∂θ′ at θ0 and Lemma A.1(ii). Therefore, the conclusion is obtained.

Proof of (ii). Similar to the proof of Lemma A.4(ii). Repeat the same argu-
ment with Rn(Qn� T̄Qn�γ) instead of Rn(P0� θn�γ). Q.E.D.

LEMMA A.7: Suppose that Assumption 3.1 holds. Then, for each sequence
Qn ∈ BH(P0� r/

√
n) and r > 0, T̄Pn

p→θ0 under Qn.

PROOF: Similar to the proof of Lemma A.1(i). Q.E.D.

LEMMA A.8: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Qn ∈ BH(P0� r/

√
n),

√
n(T̄Pn − θ0)= −√

nΣ−1

∫
Λn dPn + op(1) under Qn�

√
n(T̄Pn − T̄Qn) d→N

(
0�Σ−1

)
under Qn�

PROOF: The proof of the first statement is similar to that of Lemma A.2
(replace Qn with Pn and use Lemmas A.9 and A.10 instead of Lemmas A.5
and A.6). For the second statement, Lemma A.2 and the first statement imply

√
n(T̄Pn − T̄Qn)

= −Σ−1G′Ω−1 1√
n

n∑
i=1

{
gn(xi� θ0)−EQn

[
gn(x�θ0)

]} + op(1)�

under Qn. Thus, it is sufficient to check that we can apply a central limit theo-
rem to the triangular array {gn(xi� θ0)}1≤i≤n�n. Observe that

EQn
[∣∣gn(x�θ0)

∣∣2+ε]
=

∫ ∣∣gn(x�θ0)
∣∣2+ε{

dQ1/2
n − dP1/2

0

}2

+ 2
∫ ∣∣gn(x�θ0)

∣∣2+ε
dP1/2

0

{
dQ1/2

n − dP1/2
0

} +EP0

[∣∣gn(x�θ0)
∣∣2+ε]

≤m2+ε
n

r2

n
+ 2m1+ε

n EP0

[∣∣g(x�θ0)
∣∣2] r√

n
+EP0

[∣∣g(x�θ0)
∣∣2+ε]

<∞�

for all n large enough, where the first inequality follows from the Cauchy–
Schwarz inequality, and the second inequality follows from Assumption 3.1(v)
and (vii). Therefore, the conclusion is obtained. Q.E.D.
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LEMMA A.9: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Qn ∈ BH(P0� r/

√
n), the following hold under Qn:

(i) |EPn[gn(x�θ0)]| =Op(n−1/2), |EPn[gn(x�θ0)gn(x�θ0)
′] −Ω| = op(1),

(ii) γn(θ0�Pn) = arg maxγ∈Rm − ∫
1

(1+γ′gn(x�θ0))
dPn exists a.s. for all n large

enough, |γn(θ0�Pn)| =Op(n−1/2), and supx∈X |γn(θ0�Pn)
′gn(x�θ0)| = op(1).

PROOF:
Proof of (i): Proof of the first statement. From the triangle inequality,∣∣EPn[gn(x�θ0)

]∣∣
≤ ∣∣EPn[gn(x�θ0)

] −EQn
[
gn(x�θ0)

]∣∣ + ∣∣EQn[gn(x�θ0)
]∣∣�

The first term is Op(n−1/2) by the central limit theorem for the triangular array
{gn(xi� θ0)}1≤i≤n�n. The second term is O(n−1/2) by Lemma A.5(i).

Proof of the second statement. From the triangle inequality,∣∣EPn[gn(x�θ0)gn(x�θ0)
′ −Ω]∣∣

≤ ∣∣EPn[gn(x�θ0)gn(x�θ0)
′] −EQn

[
gn(x�θ0)gn(x�θ0)

′]∣∣
+ ∣∣EQn[gn(x�θ0)gn(x�θ0)

′] −Ω∣∣�
From a law of large numbers, the first term is op(1). From Lemma A.5(i), the
second term is o(1).

Proof of (ii). Similar to the proof of Lemma A.4(ii) except using Lem-
ma A.9(i) instead of Lemma A.4(i). Q.E.D.

LEMMA A.10: Suppose that Assumption 3.1 holds. Then, for each r > 0 and
sequence Qn ∈ BH(P0� r/

√
n), the following hold under Qn:

(i) |EPn[gn(x� T̄Pn)]| = Op(n
−1/2), |EPn[gn(x� T̄Pn)gn(x� T̄Pn)′] − Ω| =

Op(n
−1/2), and |EPn[∂gn(x� T̄Pn)/∂θ′] −G| = op(1),

(ii) γn(T̄Pn�Pn) = arg maxγ∈Rm − ∫
1

(1+γ′gn(x�T̄Pn ))
dPn exists a.s. for all n large

enough, |γn(T̄PnPn)| =Op(n−1/2), and supx∈X |γn(T̄Pn�Pn)′gn(x� T̄Pn)| = op(1).
PROOF:
Proof of (i). Similar to the proof of Lemma A.6(i).
Proof of (ii). Similar to the proof of Lemma A.6(ii). Q.E.D.
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