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NOTES AND COMMENTS

ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS,
AND MOMENT RESTRICTIONS

BY YUICHI KITAMURA, TAISUKE OTSU, AND KIRILL EVDOKIMOV1

This paper is concerned with robust estimation under moment restrictions. A mo-
ment restriction model is semiparametric and distribution-free; therefore it imposes
mild assumptions. Yet it is reasonable to expect that the probability law of observations
may have some deviations from the ideal distribution being modeled, due to various
factors such as measurement errors. It is then sensible to seek an estimation proce-
dure that is robust against slight perturbation in the probability measure that generates
observations. This paper considers local deviations within shrinking topological neigh-
borhoods to develop its large sample theory, so that both bias and variance matter
asymptotically. The main result shows that there exists a computationally convenient
estimator that achieves optimal minimax robust properties. It is semiparametrically ef-
ficient when the model assumption holds, and, at the same time, it enjoys desirable
robust properties when it does not.

KEYWORDS: Asymptotic Minimax Theorem, Hellinger distance, semiparametric ef-
ficiency.

1. INTRODUCTION

CONSIDER A PROBABILITY MEASURE P0 ∈ M, where M is the set of all proba-
bility measures on the Borel σ-field (X � B(X )) of X ⊆ R

d . Let g : X ×Θ→ R
m

be a vector of functions parameterized by a p-dimensional vector θ which re-
sides in Θ ⊂ R

p. The function g satisfies

EP0

[
g(x�θ0)

] =
∫

g(x�θ0)dP0 = 0� θ0 ∈ Θ�(1.1)

The moment condition model (1.1) is semiparametric and distribution-free;
therefore it imposes mild assumptions. Nevertheless, it is reasonable to expect
that the probability law of observations may have some deviations from the re-
striction under the moment condition model. It is then sensible to seek for es-
timation and testing procedures that are robust against slight perturbations in
the observed data, or more formally, perturbations in the probability measure
that generates observations. This notion of robustness can be illustrated as fol-
lows. Let a functional θ(P)�P ∈ M solve the moment condition model (1.1), in
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the sense that θ0 = θ(P0). Suppose, however, that observations x1� � � � � xn are
not drawn according to P0, but according to its “perturbed” version P instead.
This can be attributed to various factors, including measurement errors or data
contamination. These are imminent and realistic concerns in applications. The
goal of robust estimation is to obtain an estimator θ̄ = θ̄(x1� � � � � xn) that is not
sensitive to such perturbations, so that the deviation of the estimated value θ̄
from the parameter value of interest θ0 = θ(P0) remains stable. Decompose
the deviation as

θ̄− θ0 = [
θ̄− θ(P)

] + [
θ(P)− θ(P0)

]
�(1.2)

In the asymptotic mean squared error (MSE) calculation presented below, the
expectation of the square of the term in the first square bracket contributes to
the variance of the estimator, whereas the second corresponds to the bias. An
estimator that achieves small MSE uniformly in P over a neighborhood of P0 is
desirable.

Asymptotic theory of robust estimation when the model is parametric has
been considered extensively in the literature; see Rieder (1994) for a compre-
hensive survey. In a pioneering paper, Beran (1977) discussed “robust and effi-
cient” estimation of parametric models. Suppose Pθ�θ ∈ Θ ⊂ R

k is a paramet-
ric family of probability measures. Observations are drawn from a probability
law P , which may not be a member of the parametric family. Let pθ and p de-
note the densities associated with the probability measures Pθ and P . It is well
known that the parametric MLE procedure corresponds to minimizing the ob-
jective function ρ = ∫

log(p/pθ)pdx. Beran pointed out that a small change
in the density p can lead to a large change in the objective function ρ (note
the log in ρ), implying the nonrobustness of the MLE. He showed that the
parametric minimum Hellinger distance estimator (MHDE) is “robust and ef-
ficient,” in the sense that (i) it has an asymptotic minimax robust property, and
(ii) it is asymptotically efficient when the model assumption is satisfied, that is,
when the sample is generated from P0 = Pθ0 , where θ0 is the true value of the

parameter of interest. Let H(Pθ�P) =
√∫

(p1/2
θ (x)−p1/2(x))2 dx denote the

Hellinger distance between Pθ and P (a slightly more general definition of the
Hellinger distance is given in the next section). The MHDE for the parametric
model is

θ̂ = argmin
θ

H(Pθ� P̂)

= argmin
θ

∫ (
p1/2

θ (x)− p̂1/2(x)
)2
dx�

where p̂ is a nonparametric density estimator, such as a kernel density estima-
tor, for P , and P̂ is the corresponding estimator for the probability measure
of x. The MHDE is asymptotically equivalent to MLE and thus efficient if
the model assumption is satisfied. One can replace the Hellinger distance with
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other divergence measures such as the Kolmogorov–Smirnov distance, which
would make the corresponding minimum divergence estimator even more ro-
bust, but it would incur efficiency loss. The parametric MHDE has been stud-
ied extensively and applied to various models.

The parametric MHDE has theoretical advantages and excellent finite sam-
ple performance documented by numerous simulation studies, but it has lim-
itations as well. It requires the nonparametric density estimator when at least
some components of x are continuously distributed. This makes its practi-
cal application inconvenient, and is problematic when x is high dimensional,
due to the curse of dimensionality. It also necessitates the evaluation of the
integral

∫
(p1/2

θ (x) − p̂1/2(x))2 dx. This involves either numerical integration
or an approximation by an empirical average with inverse density weighting
using a nonparametric density estimator. The former can be hard to imple-
ment, and the latter may have undesirable effects in finite samples. This paper
aims at developing robust methods for moment restriction models, by applying
the MHDE procedure. The resulting estimator is semiparametrically efficient
when the model assumption holds, and, at the same time, it enjoys an optimal
minimax robust property when it does not. The implementation of the estima-
tor is easy. Unlike its parametric predecessor, it requires neither nonparamet-
ric density estimation nor evaluation of integration.

2. PRELIMINARIES

The econometrician wishes to estimate the unknown θ0 in (1.1). Suppose a
random sample {xi}ni=1 generated from P is observed. As discussed in Section 1,
our focus is on robust estimation of θ0 when the probability measure P , from
which the observations are drawn, is a (locally) perturbed version of P0, not
P0 itself. There exists an extensive literature concerning the estimation of (1.1)
under the “classical” setting where data are indeed drawn from P0. Many es-
timators for θ0 are available, including GMM (Hansen (1982)), the empirical
likelihood (EL) estimator, and its variants. This paper is concerned with an es-
timator that can be viewed as MHDE applied to the moment restriction model
(1.1). The Hellinger distance between two probability measures is defined as
follows:

DEFINITION 2.1: Let P and Q be probability measures with densities p and
q with respect to a dominating measure ν. The Hellinger distance between P
and Q is then given by

H(P�Q)=
{∫ (

p1/2 − q1/2
)2
dν

}1/2

=
{

2 − 2
∫

p1/2q1/2 dν

}1/2

�
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It is often convenient to use the standard notation in the literature that does
not explicitly refer to the dominating measure. Then the above definition be-
comes

H(P�Q)=
{∫ (

dP1/2 − dQ1/2
)2

}1/2

=
{

2 − 2
∫

dP1/2 dQ1/2

}1/2

�

Here we show some results concerning the Hellinger distance that are useful
in understanding the robustness theorems in the next section.

DEFINITION 2.2: Let P and Q be probability measures with densities p and
q with respect to a dominating measure ν. The α-divergence from Q to P is
given by

Iα(P�Q) = 1
α(1 − α)

∫ (
1 −

(
p

q

)α)
qdν� α ∈ R�

If P is not absolutely continuous with respect to Q, then
∫

I{p> 0� q = 0}dν >
0, and as a consequence, Iα(P�Q) = ∞ for α ≥ 1. A similar argument shows
that Iα(P�Q) = ∞ if Q �	 P and α≤ 0. Note that Iα is well defined for α= 0 by
taking the limit α→ 0 in the definition. Indeed, L’Hospital’s rule implies that

lim
α→0

Iα(P�Q)=
∫

log
(
p

q

)
qdν :=K(P�Q)

(with the above convention for the case where P �	 Q), giving rise to the well-
known Kullback–Leibler (KL) divergence measure from Q to P . The case
with α = 1 corresponds to the KL divergence with the roles of P and Q re-
versed. Note that the above definitions imply that the α-divergence includes
the Hellinger distance as a special case, in the sense that

H2(P�Q) = 1
2
I1/2(P�Q)�

The proofs of all the results are given in the Supplemental Material (Kita-
mura, Otsu and Evdokimov (2013)).

LEMMA 2.1: For probability measures P and Q,

max(α�1 − α)Iα(P�Q)≥ 1
2
I1/2(P�Q)

for every α ∈ R.

REMARK 2.1: Lemma 2.1 has some implications on a neighborhood system
generated by the Hellinger distance. Consider the following neighborhood of
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a probability measure P whose radius in terms of Iα is δ > 0:

BIα(P�δ) = {
Q ∈ M :

√
Iα(Q�P) ≤ δ

}
�

Lemma 2.1 implies that

Iα(P�Q) ≥ 1

2
((

1
2

+L

)
∨

(
1
2

+U

))Iα0(P�Q)

holds for every α ∈ [ 1
2 − L� 1

2 + U], where L�U > 0 determine the lower and
upper bounds for the range of α, if α0 = 1

2 . It is easy to verify that this statement
holds only if α0 = 1

2 . Now, define

C(L�U)=
(

1
2

+L

)
∨

(
1
2

+U

)
;

then by the above inequality,⋃
α∈[1/2−L�1/2+U]

BIα(P0� δ)⊂ BI1/2

(
P0�

√
2C(L�U)δ

)
�(2.1)

That is, the union of the Iα-based neighborhoods over α ∈ [ 1
2 − L� 1

2 + U] is
covered by the Hellinger neighborhood BI1/2 with a “margin” given by the mul-
tiplicative constant

√
2C(L�U). Equation (2.1) is important, since in what fol-

lows we consider robustness of estimators against perturbation of P0 within
its neighborhood, and it is desirable to use a neighborhood that is sufficiently
large to accommodate a large class of perturbations. The inclusion relationship
shows that the Hellinger-based neighborhood covers other neighborhood sys-
tems based on Iα�α ∈ [ 1

2 −L� 1
2 +U] if the radii are chosen appropriately. It is

easy to verify that (2.1) does not hold if the Hellinger distance I1/2 is replaced
by Iα�α �= 1

2 , showing the special status of the Hellinger distance among the
α-divergence family.

REMARK 2.2: Lemma 2.1 is a statement for every pair of measures (P�Q);
thus it holds even if P �	 Q or Q �	 P . On the other hand, it is useful to con-
sider the behavior of Iα when one of the two measures is not absolutely con-
tinuous with respect to the other. Consider a sequence of probability measures
{P(n)}n∈N. Suppose Iα(P

(n)�P0) → 0 for an α ∈ R; then Iα′(P(n)�P0) → 0 for ev-
ery α′ ∈ (0�1). But the reverse (i.e., reversing the roles of α and α′) is not true.
If P(n)� n ∈ N are not absolutely continuous with respect to P0, Iα′(P(n)�P0)= ∞
for every α′ ≥ 1 even if ρα(P

(n)�P0) → 0 for α ∈ (0�1) (and a similar argument
holds for α′ ≤ 0). This shows that Iα-based neighborhoods with α /∈ (0�1) are
too small: there are measures that are outside of BIα(P0� δ)�α /∈ (0�1) no mat-
ter how large δ is, or how close they are to P0 in terms of, say, the Hellinger
distance H.
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REMARK 2.3: The inequality in Lemma 2.1 might be of interest on its own,
as it generalizes many inequalities in the literature. For α = 1 or 0, it cor-
responds to the well-known inequality between the KL divergence and the
Hellinger distance

H(P�Q)2 ≤K(P�Q);(2.2)

see, for example, Pollard (2002, p. 62). Another commonly used definition of
divergence between probability measures is the χ2 distance. It is given, if P 	
Q 	 ν, by χ2(P�Q) = ∫

(p−q)2

q
dν, and it is shown that

H(P�Q)2 ≤ χ2(P�Q)(2.3)

(Reiss (1989)). This is implied by Lemma 2.1 by letting α = 2. Proposition 3.1
in Zhang (2006) is closer to our result in terms of its generality; it shows that
max(α�1−α)Iα(P�Q)≥ 1

2I1/2(P�Q) holds for α ∈ [0�1], which covers (2.2) but
not (2.3)2. Lemma 2.1 shows that this type of inequality holds for all α ∈ R.

Beran (1977), considering a parametric model, proposed MHDE that min-
imizes the Hellinger distance between a model-based probability measure
(from the parametric family) and a nonparametric probability measure esti-
mate. An application of the MHDE procedure to the moment condition model
(1.1) yields a computationally simple procedure as follows. Let Pn denote the
empirical measure of observations {xi}ni=1. Pn is an appropriate model-free es-
timator in our construction of the MHDE. Let

Pθ =
{
P ∈ M :

∫
g(x�θ)dP = 0

}

and

P =
⋃
θ∈Θ

Pθ;(2.4)

then the MHDE, denoted by θ̂, is defined to be a parameter value that solves
the optimization problem

inf
θ∈Θ

inf
P∈Pθ

H(P�Pn) = inf
P∈P

H(P�Pn)�

By convex duality theory (Kitamura (2006)), the objective function has the fol-
lowing representation:

inf
P∈Pθ

H(P�Pn)= max
γ∈Rm

−1
n

n∑
i=1

1
1 + γ′g(xi� θ)

�

2Zhang (2006) also derived a lower bound for the Hellinger distance in terms of Iα.
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Therefore the MHDE is θ̂ = arg minθ∈Θ maxγ∈Rm − 1
n

∑n

i=1
1

1+γ′g(xi�θ)
, which is

easy to compute.
It is easy to verify that we can obtain the MHDE as a Generalized Em-

pirical Likelihood (GEL) estimator by letting γ = −1/2 in equation (2.6)
of Newey and Smith (2004). Asymptotic properties of the (G)EL estima-
tors for θ0 in (1.1), when data drawn from P0 are observed, are well under-
stood (see, e.g., Kitamura and Stutzer (1997), Smith (1997), Imbens, Spady,
and Johnson (1998), Newey and Smith (2004)). Let G = EP0[∂g(x�θ0)/∂θ

′],
Ω= EP0[g(x�θ0)g(x�θ0)

′], and Σ= G′Ω−1G. Then

√
n(θ̂GEL − θ0)

d→ N
(
0�Σ−1

)
�(2.5)

It follows that the MHDE and other GEL estimators are semiparametrically
efficient in the absence of data perturbation. At the same time, the MHDE
possesses a distinct property of being asymptotic optimal robust if observations
are drawn from a perturbed version of P0, as we shall see in the next section.

3. ROBUST ESTIMATION THEORY

We now analyze robustness of the MHDE θ̂. Define a functional

T(P) = arg min
θ∈Θ

max
γ∈Rm

−
∫

1
1 + γ′g(x�θ)

dP;

then the MHDE can be interpreted as the value of functional T evaluated at
the empirical measure Pn. In other words, each realization of Pn completely de-
termines the value of the MHDE θ̂. To make the dependence explicit, we write
θ̂ = T(Pn), and study properties of the mapping T : M → Θ. This definition of
T(·), however, causes a technical difficulty when the distribution of g(x�θ) is
unbounded for some θ ∈ Θ and P ∈ M. To overcome this technical difficulty,
we introduce the following mapping defined by a trimmed moment function:

T̄ (Q) = arg min
θ∈Θ

inf
P∈P̄θ�P	Q

H(P�Q)�

where {mn}n∈N is a sequence of positive numbers satisfying mn → ∞ as n → ∞,
and

P̄θ =
{
P ∈ M :

∫
g(x�θ)I{x ∈ Xn}dP = 0

}
�

Xn =
{
x ∈ X : sup

θ∈Θ

∣∣g(x�θ)∣∣ ≤ mn

}
�

with the indicator function I{·} and the Euclidean norm | · |; that is, Xn is a trim-
ming set to bound the moment function and P̄θ is a set of probability measures
satisfying the bounded moment condition EP[g(x�θ)I{x ∈ Xn}] = 0.
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Let τ :Θ → R be a possibly nonlinear transformation of the parameter. We
first focus on the estimation problem of the transformed scalar parameter
τ(θ0) and investigate the behavior of the bias term τ ◦ T̄ (Q)− τ(θ0) in a (

√
n-

shrinking) Hellinger ball with radius r > 0 around P0,

BH(P0� r/
√
n)= {

Q ∈ M :H(Q�P0)≤ r/
√
n
}
�

The transformation τ to a scalar, as used by Rieder (1994), is convenient in
calculating squared biases and MSEs. One may, for example, let τ(θ) = c′θ
using a constant p-vector c. Lemma A.1(ii) guarantees that, for each r > 0, the
value T̄ (Q) exists for all Q ∈ BH(P0� r/

√
n) and all n large enough.

ASSUMPTION 3.1: Suppose the following conditions hold:
(i) {xi}ni=1 is independent and identically distributed (i.i.d.);

(ii) Θ is compact;
(iii) θ0 ∈ intΘ is a unique solution to EP0[g(x�θ)] = 0;
(iv) g(x�θ) is continuous over Θ at each x ∈ X ;
(v) EP0[supθ∈Θ |g(x�θ)|η] < ∞ for some η > 2, and there exists a neigh-

borhood N around θ0 such that EP0[supθ∈N |g(x�θ)|4] < ∞, g(x�θ) is con-
tinuously differentiable a.s. in N , supx∈Xn�θ∈N |∂g(x�θ)/∂θ′| = o(n1/2), and
EP0[supθ∈N |∂g(x�θ)/∂θ′|2] <∞;

(vi) G has the full column rank and Ω is positive definite;
(vii) {mn}n∈N satisfies mn → ∞, nm−η

n → 0, and n−1/2m1+ε
n = O(1) for some

0 < ε< 2 as n → ∞;
(viii) τ is continuously differentiable at θ0.

Assumption 3.1(i)–(vi) is standard in the literature of the GMM. Assump-
tion 3.1(iii) is a global identification condition of the true parameter θ0 un-
der P0. Assumption 3.1(iv) ensures the continuity of the mapping T̄ (Q) in
Q ∈ M for each n ∈ N. Assumption 3.1(v) contains the smoothness and bound-
edness conditions for the moment function and its derivatives. This assump-
tion is stronger than the one to derive the asymptotic distribution in (2.5).
Assumption 3.1(vi) is a local identification condition for θ0. This assumption
guarantees that the asymptotic variance matrix Σ−1 exists. Assumption 3.1(vii)
is on the trimming parameter mn. If mn ∼ na, this assumption is satisfied for
1/η < a < 1/2. Assumption 3.1(viii) is a standard requirement for the parame-
ter transformation τ. To characterize a class of estimators to be compared with
the MHDE, we introduce the following definition.

DEFINITION 3.1: Let Ta(Pn) be an estimator of θ0 based on a mapping
Ta : M → Θ. Also, let Pθ�ζ be a regular parametric submodel (see Bickel,
Klassen, Ritov, and Wellner (1993, p. 12) or Newey (1990)) of P in (2.4) such
that Pθ0�0 = P0 and Pθ0+t/

√
n�ζn ∈ BH(P0� r/

√
n) holds for ζn = O(n−1/2) eventu-

ally.
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(i) Ta is called Fisher consistent if, for every {Pθn�ζn}n∈N and t ∈ R
p,

√
n
(
Ta(Pθ0+t/

√
n�ζn)− θ0

) → t�(3.1)

(ii) Ta is called regular for θ0 if, for every {Pθn�ζn}n∈N with (θ′
n� ζ

′
n)

′ = (θ′
0�0)′ +

O(n−1/2), there exists a probability measure M such that

√
n
(
Ta(Pn)− Ta(Pθn�ζn)

) d→ M under Pθn�ζn�(3.2)

where the measure M does not depend on the sequence (θ′
n� ζ

′
n)

′.

Both conditions are weak and satisfied by GMM, (G)EL, and other standard
estimators. For example, the mapping Ta for the continuous updating GMM
estimator (CUE) is given by

TCUE(P) = argmin
θ∈Θ

[∫
g(x�θ)dP

]′[∫
g(x�θ)g(x�θ)dP

]−1

×
[∫

g(x�θ)dP

]
�

and, under Assumption 3.1, TCUE(Pθ0+t/
√
n� ζn) = θ0 + t/

√
n for large n.

CUE therefore trivially satisfies (3.1). The regularity condition (3.2) is stan-
dard in the literature of semiparametric efficiency; see, for example, Bickel
et al. (1993).

The following theorem shows the optimal robustness of the (trimmed)
MHDE in terms of its maximum bias.

THEOREM 3.1: Suppose that Assumption 3.1 holds.
(i) For every Ta that is Fisher consistent,

lim inf
n→∞

sup
Q∈BH(P0�r/

√
n)

n
(
τ ◦ Ta(Q)− τ(θ0)

)2 ≥ 4r2B∗�

for each r > 0, where B∗ = ( ∂τ(θ0)

∂θ
)′Σ−1( ∂τ(θ0)

∂θ
).

(ii) The mapping T̄ is Fisher consistent and satisfies

lim
n→∞

sup
Q∈BH(P0�r/

√
n)

n
(
τ ◦ T̄ (Q)− τ(θ0)

)2 = 4r2B∗�

for each r > 0.

REMARK 3.1: The above result is concerned with deterministic properties
of Ta and T . Ta(Q) and T(Q) can be regarded as the (probability) limit of the
estimators Ta(Pn) and T(Pn) under Q, and therefore the terms evaluated here
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correspond to the bias of each estimator due to the deviation of Q from P0.
The theorem says that, in the class of all mappings that are Fisher consistent,
the mapping T̄ has the smallest maximum bias over the set BH(P0� r/

√
n). The

(trimmed version of) the Hellinger-based mapping T̄ is therefore optimally
robust asymptotically in a minimax sense. The term 4r2B∗ provides a sharp
lower bound for maximum squared bias, and it is attained by T̄ .

REMARK 3.2: The theorem is concerned with the trimmed version of the
MHDE. It avoids the complications associated with the existence of T(Q)
for certain Q’s. If the support of supθ∈Θ |g(x�θ)| is bounded under every Q ∈
BH(P0� r/

√
n) for large enough n (e.g., if the moment function g is bounded),

then we do not need the trimming term I{x ∈ Xn}. In this case, the mapping T
without trimming has the above optimal robust property.

REMARK 3.3: The index n in the statement of Theorem 3.1 simply parame-
terizes how close Q ∈ BH(P0� r/

√
n) and P0 are, and does not have to be inter-

preted as the sample size. The next theorem, however, is concerned with MSEs
and the index n represents the sample size there.

The next theorem is our main result, which is concerned with (the supremum
of) the MSE of the minimum Hellinger distance estimator θ̂ = T(Pn) and other
competing estimators. Let

B̄H(P0� r/
√
n)= BH(P0� r/

√
n)∩

{
Q ∈ M :EQ

[
sup
θ∈Θ

∣∣g(x�θ)∣∣η] <∞
}
�(3.3)

We use the notation P⊗n to denote the n-fold product measure of a probability
measure P .

THEOREM 3.2: Suppose that Assumption 3.1 holds.
(i) For every Fisher consistent and regular mapping Ta,

lim
b→∞

lim inf
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
b∧ n

(
τ ◦ Ta(Pn)− τ(θ0)

)2
dQ⊗n

≥ (
1 + 4r2

)
B∗�

for each r > 0.
(ii) The mapping T is Fisher consistent and regular, and the MHDE θ̂ = T(Pn)

satisfies

lim
b→∞

lim
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
b∧ n

(
τ ◦ T(Pn)− τ(θ0)

)2
dQ⊗n = (

1 + 4r2
)
B∗�

for each r > 0.
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REMARK 3.4: This theorem establishes an asymptotic minimax optimal-
ity property of the MHDE, in terms of MSE among all the estimators,
that satisfies the two conditions in Definition 3.1. Note that the expression
supQ∈B̄H(P0�r/

√
n)

∫
b ∧ n(τ ◦ Ta(Pn) − τ(θ0))

2 dQ⊗n is the maximum finite sam-
ple MSE of Ta(Pn). Thus our criterion for evaluating Ta (and T ) is the limit of
its maximum finite sample MSE. Taking the supremum over BH before letting
n go to infinity is important for capturing finite sample robustness properties.
The method of calculating the truncated MSE first, then letting b→ ∞, is stan-
dard in the literature of robust estimation, but is also used in general contexts;
see, for example, Bickel (1981) and LeCam and Yang (1990). Once again, we
are able to derive a sharp lower bound for the maximum MSE and show that
it is achieved by the MHDE θ̂ = T(Pn).

REMARK 3.5: Unlike in Theorem 3.1, optimality is achieved by the un-
trimmed version of the MHDE. Note that T(Pn) exists for large n under As-
sumption 3.1, in contrast to our discussion in Remark 3.2 on Theorem 3.1.
Theorem 3.2, however, restricts the robustness neighborhood by an extra re-
quirement as in (3.3). This is useful in showing that the untrimmed MHDE
achieves the lower bound.

REMARK 3.6: Theorem 3.2 proves that the MHDE is asymptotically opti-
mally robust over a sequence of infinitesimal neighborhoods. Note that the
Hellinger neighborhood over which the maximum of MSE is taken is nonpara-
metric, in the sense that potential deviations from P0 cannot be indexed by a
finite dimensional parameter. That is, our robustness concept demands uni-
form robustness over a nonparametric, infinitesimal neighborhood. The use of
infinitesimal neighborhoods, where the radius of the Hellinger ball shrinks at
the rate n1/2, is useful in balancing the magnitude of bias and variance in our
asymptotics. If one uses a fixed, global neighborhood, then the bias term would
dominate the behavior of estimators. This may fail to provide a good approxi-
mation of finite sample behavior in actual applications, since in reality it would
be reasonable to be concerned with both the stochastic fluctuation of estima-
tors and their deterministic bias due to, say, data contamination. We note that
there is a related but distinct literature on the asymptotics theory when the
model is globally misspecified, as in White (1982), who considered paramet-
ric MLE. Kitamura (1998, 2002) offered such analysis for conditional and un-
conditional moment condition models. Moreover, Schennach (2007) provided
novel and potentially very useful results of EL estimators and their variants in
misspecified moment condition models. We regard our paper as a complement
to, rather than a substitute for, the results obtained in these papers. There are
fundamental differences between the characteristics of the problems the cur-
rent paper considers and those of the papers on misspecification. First, our ob-
ject of interest is θ0, not a pseudo-true value, as we consider data perturbation
rather than model misspecification. Second, the nature of our analysis is local
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and, therefore, the parameter value θ0 in (1.1) is still identified asymptotically.
Third, as noted above, we consider uniform robustness over a nonparametric
neighborhood. The papers cited above consider pointwise problems. There-
fore our approach deals with phenomena that are very different from the ones
analyzed in the literature of misspecified models.

REMARK 3.7: We have seen in Remark 2.1 that the Hellinger neighborhood
BH has nice and distinct properties, in particular the inclusion relationship
(2.1). The Hellinger neighborhood BH is commonly used in the literature of ro-
bust estimation (of parametric models); see, for example, Beran (1977), Bickel
(1981), and Rieder (1994). We should note, however, that other neighborhood
systems have been used in the literature as well. For example, one may replace
the Hellinger distance H with the Kolmogorov–Smirnov (KS) distance in the
definition of BH . As Beran (1984) noted, however, to guarantee robustness in
the Kolmogorov–Smirnov neighborhood system, one needs

“to use minimum distance estimates based on the Kolmogorov–Smirnov metric or a dis-
tance weaker than the Kolmogorov–Smirnov metric . . . The general principle here is that
the estimation distance be no stronger than the distance describing the contamination
neighborhood. . . .”

Donoho and Liu (1988) developed a general theory of the above point.
What this means is that an estimator that is robust against perturbations within
Kolmogorov–Smirnov neighborhoods has to be minimizing the KS (or weaker)
distance. The “minimum KS estimator” for the moment restriction model
would be indeed robust, but it cannot be semiparametrically efficient when the
model assumption holds. Therefore, unlike the moment restriction MHDE,
the estimator is not “robust and efficient.” Another drawback is its computa-
tion, since, unlike the moment restriction MHDE, no convenient algorithm to
minimize the Kolmogorov–Smirnov distance under the moment restriction is
known in the literature. It should be noted that the moment restriction MHDE
is efficient in the sense that it achieves the semiparametric efficiency bound. It
does not have the desirable higher order properties of EL (Newey and Smith
(2004)) or the ETEL estimator proposed by Schennach (2007).

The above MSE theorem conveniently summarizes the desirable robustness
properties of the MHDE in terms of both (deterministic) bias and variance. It
has, however, some limitations. First, its minimaxity result is obtained within
Fisher consistent and regular estimators. While these requirements are weak,
it might be of interest to expand the class of estimators. More importantly,
implicit in the MSE-based analysis is that we are interested in L2-loss. One may
wish to use other types of loss functions, however, and it is of interest to see
whether the above minimax results can be extended to a larger class of loss. The
next theorem addresses these two issues. Of course, the MSE has an advantage
of subsuming the bias and the variance in one measure. To deal with general
loss functions, the next theorem focuses on the risk of estimators around a
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Fisher consistent mapping evaluated at the perturbed measure Q. This can be
regarded as calculating the risk of the first bracket of the decomposition (1.2),
that is, the stochastic part of the deviation of the estimator from the parameter
of interest θ0.

Let S be a set of all estimators, that is, the set of all R̄
p-valued measur-

able functions. We now investigate robust risk properties of this large class of
estimators. The loss function we consider satisfies the following weak require-
ments.

ASSUMPTION 3.2: The loss function � : R̄p → [0�∞] is (i) symmetric subconvex
(i.e., for all z ∈ R

p and c ∈ R, �(z) = �(−z) and {z ∈ R
p :�(z) ≤ c} is convex);

(ii) upper semicontinuous at infinity; and (iii) continuous on R̄
p.

We now present an optimal risk property for the MHDE.

THEOREM 3.3: Suppose that Assumptions 3.1 and 3.2 hold.
(i) For every Fisher consistent mapping Ta,

lim
b→∞

lim
r→∞

lim inf
n→∞

inf
Sn∈S

sup
Q∈B̄H(P0�r/

√
n)

∫
b∧ �

(√
n
(
Sn − τ ◦ Ta(Q)

))
dQ⊗n

≥
∫

�dN
(
0�B∗)�

(ii) The mapping T is Fisher consistent and the MHDE θ̂ = T(Pn) satisfies

lim
b→∞

lim
n→∞

sup
Q∈B̄H(P0�r/

√
n)

∫
b∧ �

(√
n
(
τ ◦ T(Pn)− τ ◦ T̄ (Q)

))
dQ⊗n

=
∫

�dN
(
0�B∗)�

for all r > 0.

Note that Theorem 3.3(ii) remains valid if T(Pn) is replaced by T̄ (Pn). This
theorem shows that the MHDE is once again optimally robust even for the gen-
eral risk criterion, and this holds in the class of essentially all possible estima-
tors. As noted above, the result is concerned with the stochastic component of
the decomposition (1.2). Theorem 3.1 has already established that the MHDE
is optimal in terms of its bias, that is, the deterministic part of the decompo-
sition (1.2) in the second bracket. The latter result does not depend on a spe-
cific loss function. Thus the MHDE enjoys general optimal robust properties
under a quite general setting, in terms of both the stochastic component and
the deterministic component. Note that analyzing these two parts separately is
common in the literature of robust statistics: see, for example, Rieder (1994).



1198 Y. KITAMURA, T. OTSU, AND K. EVDOKIMOV

4. SIMULATION

The purpose of this section is to examine the robustness properties of the
MHDE and other well-known estimators such as GMM using Monte Carlo
simulations. MATLAB is used for computation throughout the experiments.
The sample size n is 100 for all designs, and we ran 5000 replications for each
design.

The baseline simulation design in this experiment follows that of Hall and
Horowitz (1996). We then “contaminate” the simulated data to explore ro-
bustness of estimators. More specifically, let x = (x1�x2)

′ ∼ N(0�0�42I2). This
normal law corresponds to P0 in the preceding sections. The specification of
the moment function g is

g(x�θ) = (
exp

{−0�72 − θ(x1 + x2)+ 3x2

} − 1
)(

1
x2

)
�

The moment condition
∫
g(x�θ)dP0 = 0 is uniquely solved at θ0 = 3. The

goal is to estimate this value using the above specification of g when the
original DGP is perturbed into different directions. More specifically, we use
x∼ N(0�Σ(δ�ρ)), where

Σ(δ�ρ) = 0�42

(
(1 + δ)2 ρ(1 + δ)
ρ(1 + δ) 1

)
�

The unperturbed case thus corresponds to δ= ρ= 0. In the simulation, we set
ρ= 0�1

√
2 cos(2πω) and δ= 0�25 sin(2πω) and let ω vary over ωj = j/64� j =

0� � � � �63. This yields 64 different designs; for each of them, 5000 replications
are performed and RMSE and Pr{|θ̂ − θ0| > 0�5} are calculated. We consider
the following estimators: empirical likelihood (EL), MHDE, exponential tilt-
ing (ET), GMM (GMM2), and continuously updated GMM (CUE). GMM2
is calculated following the standard two step procedure where the initial es-
timate is obtained from identity weighting. CUE’s performance is extremely
sensitive to data perturbations considered here; its RMSE is much higher than
that of the other estimators. For convenience, we only plot the results for EL,
MHDE, ET, and GMM2 in displaying their RMSEs. The results are presented
in Figure 1. In the left panel, each curve represents the RMSE of a particu-
lar estimator as a function of ωj . The right panel (labeled “Pr”) displays the
simulated probability of an estimator deviating from the target θ0 = 3 by more
than 0.5.

While RMSE is a potentially informative measure, it can be highly mislead-
ing, as some of the estimators may not have finite moments. We thus focus on
the results for deviation probabilities. The performance of CUE clearly indi-
cates its lack of robustness against data perturbations. We also see that GMM2
is affected by perturbations much more than EL, MHDE, and ET, except for
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FIGURE 1.—Local neighborhood of the true model. “Pr” denotes Pr{|θ̂− θ0| > 0�5}.

the values of ω’s between 0.4 and 0.6, where the performances of the estima-
tors other than CUE are rather close. ET seems to perform a little worse than
MHDE and EL.

One needs to be cautious in drawing conclusions based on limited simula-
tion experiments as presented here. Nevertheless, it appears that two general
features emerge from our results. First, the GMM type estimators (two step
GMM and CUE) tend to be highly sensitive to data perturbations. Applying
Beran’s (1977) logic that connects the robustness of estimators to the forms
of their objective functions, this may be attributed to the fact that the GMM
objective function is quadratic and therefore tends to react sensitively to the
added noises. Second, EL, MHDE, and ET are relatively well behaved, and
their rankings, not surprisingly, vary depending on the simulation design. The
performance of MHDE, however, seems more stable compared with that of
EL or ET: EL and ET exhibit more instability throughout the different pertur-
bation designs. Note that EL, MHDE, ET, and CUE correspond to the GEL
estimator with γ = −1�− 1

2 �0�1 in equation (2.6) of Newey and Smith (2004).
Given the good theoretical robustness property of the MHDE, and the prox-
imity of EL and ET in terms of their γ values, it is interesting to observe the
reasonably robust behavior of EL and ET. Note that CUE, whose behavior is
quite different from that of the MHDE and thus highly nonrobust, has γ = 1,
a value that is much higher than the optimally robust γ = −1/2 of the MHDE.

5. CONCLUSION

In this paper, we have explored the issue of robust estimation in a mo-
ment restriction model. The model is semiparametric and distribution-free,
and therefore imposes mild assumptions. Yet it is reasonable to expect that
the probability law of observations may have some deviations from the ideal
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distribution as modeled by the moment restriction model. It is then sensible
to seek estimation procedures that are robust against slight perturbations in
the probability measure that generates observations, which can be caused by,
for example, data contamination. Our main theoretical result shows that the
minimum Hellinger distance estimator (MHDE) possesses optimal minimax
robust properties. Moreover, it remains semiparametrically efficient when the
model assumptions hold. Convenient numerical algorithms for its implemen-
tation are provided. Our simulation results indicate that GMM can be highly
sensitive to data perturbations. The performance of the MHDE remains sta-
ble over a wide range of simulation designs, which is in accordance with our
theoretical findings.

The results obtained in this paper are concerned with estimation, though
it might be potentially possible to extend our robustness theory to parame-
ter testing problems. It is of practical importance to consider robust methods
for testing and confidence interval calculations so that the results of statisti-
cal inference for moment restriction models are reliable and not too sensitive
to departures from model assumptions. Interestingly, there exists a literature
on parametric robust inference based on the MHDE method. We plan to in-
vestigate robust testing procedure in moment condition models in our future
research.
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