
COMMENTS ON “ON THE INFORMATIVENESS OF DESCRIPTIVE

STATISTICS FOR STRUCTURAL ESTIMATES”

YUICHI KITAMURA∗

1. Andrews, Gentzkow and Shapiro’s ∆-measure

In their excellent and simulating paper, Andrews, Gentzkow and Shapiro (2020; hereafter

AGS20) propose a new measure of informativeness of descriptive statistics. Suppose the researcher

considers a structural model parameterized by η. The parameter of interest c, which can be a coun-

terfactual value, is a function of η. The researcher estimates c by an estimator ĉ, and also reports a

descriptive statistic γ̂. To be more precise, for a value η0, consider a sequence ηn(h) := η0 + 1√
n
h,

which yields an expansion

(1.1) c(ηn(h)) = c(η0) +
1√
n
c?(h) + o

(
1√
n

)
.

The same setting also applies to γ, leading to a similar expansion. The values c(ηn(h)) and γ(ηn(h))

are the “estimand” within the paper’s local asymptotic framework, i.e. the parameter values to be

learned by ĉ and γ̂. Under AGS20’s Assumption 2, we have

√
n

 ĉ− c(ηn(h))

γ̂ − γ(ηn(h))

→d N

0

0

 ,

 σ2c Σcγ

Σγc Σγγ

 .

This means that the estimator ĉ is asymptotically unbiased for the parameter c(ηn(h)), up to the order

of 1/
√
n when the model is correctly specified. In view of (1.1), for all purposes it is more convenient

to consider c?(h) as the parameter of interest, as the authors suggest.

Having set up the local asymptotic framework as above, the authors proceed to introduce

misspecification into it. This, of course, is the main theme of the paper. It considers (sequences of)

misspecified probability distributions such that ĉ tends to c(η0) + 1√
n
c̄ up to the order of 1√

n
. The

difference between c̄ and c? is then the misspecification bias.

The key elements of the paper are two sets of sequences of CDFs: for each fixed value c? ∈ R

it defines SRN (c?), which is the set of infinite sequences of probability distributions such that its
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each element S̃ has another sequence S satisfying the following conditions (see AGS20 for precise

statements, in slightly different notation):

(i-a) S is consistent with the structural model (i.e. the model is correct under S)

(i-b) the value of c? corresponding to S is equal to c?

(ii-a) S̃ and S are close to each other

(ii-b) the limiting values of γ̂ under S and S̃ are equal (up to the order of 1/
√
n).

Dropping the requirement (ii-b) defines SN (c?). The asymptotic bias of ĉ over ∪c?SRN (c?) is naturally

no greater than that with ∪c?SN (c?). AGS20 advocate the use of

∆ =
ΣcγΣ−1γγΣγc

σ2c

which is the ratio of these two maximal asymptotic biases of ĉ. The measure ∆ gives the degree to

which the extra restriction (ii-b) limits the misspecification bias of ĉ. [An aside: From the perspective

of robust statistics, it seems natural to regard S as an “ideal” CDF, or, more precisely, an ideal

sequence of CDFs. The researcher does not have access to data from S, however, and instead observes

data generated from S̃, which is subject to measurement error or other causes of data contamination.

Such a stand is, for example, taken by Kitamura, Otsu, and Evdokimov (2013). A possible advantage

of this interpretation is that it is easy to define what the true parameter value is.]

2. Defining Informativeness: Robustness, Misspecification and Efficiency

I find the measure ∆ very neat, and it is practical. Even without referencing to the theoretical

derivation through misspecification analysis in AGS20, one can say that it has an intuitive form. To

begin, it holds that 1/(1−∆) = {Σ−1}11{Σ}11, where {·}ij denotes the (i, j) element of a matrix. Or,

alternatively, if there exist a vector of estimators (c̃, γ̃′)′ such that they are N(0,Σ) in finite samples,

then ∆ = [(variance of c̃) − (variance of c̃ conditional on γ̃)]/(variance of c̃). The latter fact in

particular seems to suggest a potential connection between AGS20’s ∆ and estimation efficiency. In

what follows we explore such relationships.

As done in AGS20, the first step is to introduce a restriction on the set of permissible data

distributions implied by the descriptive statistic γ̂. Instead of considering three sequences of distribu-

tions S̃ ∈ SN (c?), S̃r ∈ SRN (c?) and S, we use the empirical distribution of data F̂n, its “restricted

version” F̂ r
n (to be defined shortly), and the data generating distribution F0 that is consistent with the

structural model. The three distributions stay together within a
√
n neighborhood by the functional
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CLT, effectively satisfying the restriction (ii-a). Misspecification plays no role here, however: the

researcher observes iid data drawn from F0.

Next, I reformulate ĉ as a statistical functional in von Mises’ sense, as in, for example, Fernholz

(2012). To this end, let us introduce a functional C : F → R, where the symbol F denotes the

set of distribution functions, so that it is equal to the estimator ĉ when evaluated at the empirical

distribution F̂n, so that ĉ = C(F̂n). Moreover, evaluated at the true DGP F0, it provides the true

value of the parameter of interest, thus c0 = C(F0). Many estimators can be interpreted as statistical

functionals of the empirical distribution; see, for example, Ichimura and Newey (2015). Assume that

C(·) is Hadamard differentiable at F0 with respect to ‖ · ‖∞:

|C(F t)− C(F0)− Ċ(F0, F
t − F0)|

t
→ 0 for all {F t} such that ‖(t−1(F t − F0)−H‖∞ → 0 for some H

where Ċ(·, ·) is continuous and linear in the second argument. Letting φc(D) := Ċ(F0,1{D ≤ ·}−F0)

denote the influence function in accordance to the asymptotic linear representation in Assumption 1

of AGS20, a simple application of the Functional Delta Method yields

√
n(ĉ− c0) =

√
n[C(F̂n)− C(F0)]→d N(0, σ2c )

where σ2c =
∫
φ2cdF0. This is what Huber (2004, p.37) calls “a one line asymptotic normality proof.”

We now seek for a similar asymptotic normality result, but this time with an additional con-

straint analogous to (ii-b) used in the bias analysis in AGS20. We will introduce a constrained em-

pirical CDF F̂ r
n and consider a plug-in estimator ĉr = C(F̂ r

n). To this end, once again I use statistical

functional notation and write

γ̂ = Γ(F̂n), γ0 = Γ(F0).

To develop a parallelism with AGS20, we use an appropriate analogue of (ii-b) to define a set of

restricted CDFs:

(2.1) F r := {F ∈ F : Γ(F ) = Γ(F0)}.

To simplify our argument, assume further that Γ is a functional such that γ̂ = Γ(F̂n) = γ0 +

A(F̂n)
∫
φγdF̂n, where φγ corresponds to the influence function in Assumption 1 of AGS20 and A(·)

is a square matrix. This does not seem too restrictive in our context, as descriptive statistic such as

sample means, OLS and just identified linear IV estimators belong to this category. We next obtain

an appropriate “restricted version” of F̂n by introducing a divergence measure between CDFs. This

is again consistent with the use of the Cressie-Read family in Section 4.3 in AGS20. To use a concrete

example, we work on the Kullback-Leibler divergence K(F,G) =
∫

log f
g dF for CDFs F and G with
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density functions f and g. Other divergence measures, such as other members of the Cressie-Read

family, or even a larger class of divergence family, can be used; see Imbens, Spady, and Johnson

(1998), Kitamura (2006) and Newey and Smith (2004) for related discussions. In any event, consider

the minimizer of the following problem

minimize K(F̂ , F ) subject to F ∈ F r.

Assuming that A(F0) is nonsingular, under weak restrictions, the convexity of the set {F ∈ F :∫
φγdF = γ0} guarantees a unique solution given by

F̂ r
n(z) =

n∑
i=1

1{Di ≤ z}p̂i, p̂i =
exp(θ′nφγ(Di))∑n
i=1 exp(θ′nφγ(Di))

, θn = argmin
θ

n∑
i=1

exp(θ′φγ(Di))

for large n. This corresponds to exponential tilting (see, e.g. Kitamura and Stutzer (1997)). Moreover,

the empirical process
√
n(F̂ r−F0) converges to a Gaussian process:

√
n(F̂ r−F0) G where G has the

covariance kernel of the form F0(t∧s)−F0(t)F0(s)−Cov(1{D ≤ t}, φγ)Var(φγ)−1Cov(φγ ,1{D ≤ s}).

See Sheehy (1988). Let ĉr := C(F̂ r
n), which incorporates the restriction implied by the descriptive

statistic γ̂ on the CDF to be plugged in for the statistical functional C(·). With the Hadamard

differentiability assumption on the functional C(·), we have, once again by the Functional Delta

Method (see, in particular, Van der Vaart (2000) Theorem 20.8)

√
n(ĉr − c0) =

√
n[C(F̂ r

n)− C(F0)]

=
√
nĊ(F0, F̂

r
n − F0) + op(1)

=
√
nĊ(F0,

n∑
i=1

p̂i1{Di ≤ ·} − F0) + op(1)

=
√
n

n∑
i=1

p̂iĊ(F0,1{Di ≤ ·} − F0) + op(1)

=
√
n

n∑
i=1

p̂iφc(Di) + op(1)

→d N(0,Var(φc)− Cov(φc, φγ)Var(φγ)−1Cov(φγ , φc)).

Let s2ĉr := Var(φc)−Cov(φc, φγ)Var(φγ)−1Cov(φγ , φc), then denoting the asymptotic variance of ĉ by

s2ĉ = σ2c , we obtain

∆ =
s2ĉ − s2ĉr
s2ĉ

.

This provides an alternative expression of the measure ∆ as the relative asymptotic efficiency gain

for the differentiable statistical functional C from imposing the invariance restriction with respect to
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Γ in (2.1). This is not a coincidence; local robustness and (local) asymptotic efficiency are naturally

intertwined concepts. See, for example, Rieder (2014) for an insightful discussion. In the context

of GMM, Honoré, Jørgensen, and de Paula (2020) point out that a sensitivity statistic proposed by

Andrews, Gentzkow, and Shapiro (2017) — a companion paper of AGS20 — is related to measuring

how each moment condition contributes to estimation precision in GMM. The latter, in turn, is

connected to an earlier literature on informativeness/redundancy of moment conditions (see, e.g.

Breusch, Qian, Schmidt, and Wyhowski (1999)). The approach here is somewhat different, as I make

explicit use of the restricted space of CDFs F r to explore its impact on the asymptotic variance of the

statistical functional C, paralleling the AGS20’s analysis of asymptotic biases through restrictions on

the space of CDFs.

Lastly, the result I outlined above that uses F̂ r
n in the possibly nonlinear statistical functional

C(·) is closely related to results concerning estimation of moments in the presence of other moment

restrictions via “re-weighting”: see, for example, Back and Brown (1993), Brown and Newey (2002)

and Hellerstein and Imbens (1999). Note that for these problems the estimand can be viewed an

exactly linear functional of the underlying distribution. Further developments in von Mises calculus

with side constraints would be of great interest, if one wishes to generalize the type of argument

presented here in various directions.

With all that said, I strongly believe the issue of robustness should be a central concern for

modern econometricians, and I find AGS20’s local misspecification analysis illuminating, compelling

and useful. Their statistic ∆ is a practical and valuable measure: it will be a useful tool for applied

economists for years to come.
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