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A.1.1. A Toy Model. As noted in the main text, the key insight for our estimation procedure lies

in the fact the estimation of fβ in (1.3) is mathematically equivalent to a statistical deconvolution

problem. To see this, it is useful to first consider the case with d = 2. We parameterize the vectors

b = (b1, b2)
′ and x = (x1, x2)

′ on S
1 by their angles φ = arccos (b1) and θ = arccos (x1) in [0, 2π).

As is often the case when Fourier series techniques are used, we consider spaces of complex valued

functions. Let Lp(S1) denote the Banach space of Lebesgue p-integrable functions and its norm by

‖ · ‖p. In the case of L2(S1), the norm is derived from the hermitian product
∫ 2π
0 f(θ)g(θ)dθ. Let Rθ

and fφ denote the extension R of r according to (3.2) and fβ after the reparameterization. Our task

is then to obtain fφ from the knowledge of Rθ. Rewrite (1.3) using these definitions, then divide both

sides by π, to get:

(A.1)
Rθ

π
(θ) =

H(fβ)

π
(θ) =

∫ 2π

0

(
1

π
I {|θ − φ| < π/2}

)
fφ(φ)dφ.

If we further define fθ := Rθ/π and fη(η) := 1
π I{|η| < π/2}, then using the standard notation for

convolution, (A.1) can be written as fθ = fη ∗ fφ. It is now obvious that the estimation of fφ (thus

fβ) is linked to the following statistical deconvolution problem: unobservable random variables φ and

η with densities fφ and fη are related to an observable random variable θ according to θ = η+φ, and

one wishes to recover fφ from fθ, the density of θ, when fη is known (and it is Uniform[−π/2, π/2] in
this case).1

The problem of deconvolution on the unit circle can be conveniently solved using Fourier

series. The set of functions
(
exp(−int)/√2π

)
n∈Z is the orthonormal basis of L2(S1) used to define

Fourier series. This system is also complete in L1(S1). Reparameterize a function f ∈ L1(S1) it

using angles as above, and denote it by ft. Denoting the Fourier coefficients of f ∈ L1(S1) by

1It is also useful to note that the inversion of H is closely related to differentiation. Differentiating the right hand-side

of expression (A.1) with respect to θ identifies fφ(θ + π/2)− fφ(θ − π/2) where fφ is defined on the line by periodicity.

If fφ is supported on a semicircle, with an assumption that is elaborated further in Section 3, fφ (which is positive) is

identified. Thus if the model is identified the inverse of H is a differential operator and as such unbounded.
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cn(ft) =
∫ 2π
0 ft(t) exp(−int)dt/(2π),

(A.2) ft(θ) =
∑
n∈Z

cn(ft) exp(int)

holds in the L1(S1) sense. Recall also that for f and g in L1(S1), after the same reparameterization,

(A.3) cn(ft ∗ gt) = 2πcn(ft)cn(gt).

Using equation (A.3) we obtain the following proposition.

Proposition A.1. c0(Rθ) = πc0 (fφ) and for n ∈ Z \ {0}, cn(Rθ) = cn (fφ) 2 sin (nπ/2) /n.

As in classical deconvolution problems on the real line, our aim is to obtain ft (thus fβ) using

equation (A.2) and Proposition A.1. Proposition A.1 shows that c2p(Rθ) = 0 holds for all non-zero

p’s, regardless of the values of c2p(fφ), p ∈ Z\{0}. Thus from r(x) = Rθ(θ) one can only recover the

Fourier coefficients cn(fφ) for n = 0 (which is easily seen to be 1/2π, by integrating both sides of (A.1)

and noting that fβ is a probability density function) and n = 2p + 1, p ∈ Z. The same phenomenon

occurs in higher dimensions, as explained in Section A.1.3.

Remark A.1. The vector spaces H2p+1,2 = span
{
exp(i(2p + 1)t)/

√
2π, exp(−i(2p + 1)t)/

√
2π

}
, p ∈

N are eigenspaces of the compact self-adjoint operator H on L2(S1). These eigenspaces are associated

with the eigenvalues 2(−1)p

2p+1 . Also,
⊕

p∈N\{0}H
2p,2 is the null space ker H.

A.1.2. The Gegenbauer polynomials. We summarize some results on the Gegenbauer polynomi-

als, which are used in various parts of the paper. These can be found in Erdélyi et al. (1953) and

Groemer (1996). When ν = 0 and d = 2, it is related to the Chebychev polynomials of the first kind,

as

∀n ∈ N \ {0}, C0
n(t) =

2

n
Tn(t)

and

C0
0 (t) = T0(t) = 1

hold for

Tn(t) = cos (n arccos(t)) , n ∈ N.

When ν = 1 and d = 4, C1
n(t) coincides with the Chebychev polynomial of the second kind Un(t),

which is given by

Un(t) =
sin[(n+ 1) arccos(t)]

sin[arccos(t)]
, n ∈ N.
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The Gegenbauer polynomials are orthogonal with respect to the weight function (1 − t2)ν−1/2dt on

[−1, 1]. Note that Cν
0 (t) = 1 and Cν

1 (t) = 2νt for ν �= 0 while C0
1 (t) = 2t. Moreover, the following

recursion relation holds

(A.4) (n+ 2)Cν
n+2(t) = 2(ν + n+ 1)tCν

n+1(t)− (2ν + n)Cν
n(t).

Implementation of our estimator requires evaluation of the Gegenbauer polynomials for a series of

successive values of n. The recursion relation (A.4) is therefore a powerful tool. The Gegenbauer

polynomials are related to each other through differentiation, that is, they satisfy

(A.5)
d

dt
Cν
n(t) = 2νCν+1

n−1(t)

for ν > 0 and

(A.6)
d

dt
C0
n(t) = 2C1

n−1(t).

For ν �= 0 the Rodrigues formula states that

(A.7) Cν
n(t) = (−2)−n(1− t2)−ν+1/2 (2ν)n

(ν + 1/2)nn!

dn

dtn
(1− t2)n+ν−1/2.

The following results are also used in the paper:

(A.8) sup
t∈[−1,1]

∣∣∣∣Cν
n(t)

Cν
n(1)

∣∣∣∣ ≤ 1,

(A.9) ∀ ν > 0, ∀n ∈ N, Cν
n(1) =

⎛⎝ n+ 2ν − 1

n

⎞⎠

(A.10) C0
0 (1) = 1 and ∀n ∈ N \ {0}, C0

n(1) =
2

n
,

(A.11) Cν
n(−t) = (−1)nCν

n(t).

These orthogonal polynomials are normalized such that

(A.12) ‖Cν(d)
n

(
x′·) ‖22 = |Sd−2|

∫ 1

−1
(Cν(d)

n (t))2(1− t2)(d−3)/2dt =
|Sd−1|(Cν(d)

n (1))2

h(n, d)
.
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A.1.3. Tools for Higher Dimensional Spheres. Let us introduce some concepts used for the

treatment of the general case d ≥ 2. We consider functions defined on the sphere S
d−1, which is

a d − 1 dimensional smooth submanifold in R
d. The canonical measure on S

d−1 (or the spherical

measure) is denoted by σ. It is a uniform measure on S
d−1 satisfying

∫
Sd−1 dσ = |Sd−1|, where |Sd−1|

signifies the surface area of the unit sphere.

Recall that the basis functions exp(±int)/√2π are eigenfunctions of − d
dt2

associated with

eigenvalue n2. In a similar way, the Laplacian on the sphere Sd−1, d ≥ 2, denoted by ΔS, can be used

to obtain an orthonormal basis for higher dimensional spheres. It can be defined by the formula

(A.13) ΔSf = (Δf )̌̂

where Δ is the Laplacian in R
d, f̌ the radial extension of f , that is f̌(x) = f(x/‖x‖), and f̂ the

restriction of f to S
d−1. Likewise the gradient on the sphere is given by:

(A.14) ∇Sf = (∇f )̌̂

where ∇ is the gradient in R
d.

Definition A.1. A surface harmonic of degree n is the restriction of a homogeneous harmonic poly-

nomial (a homogeneous polynomial p whose Laplacian Δp is zero) of degree n in R
d to S

d−1.

The reader is referred to Müller (1966) and Groemer (1996) for clear and detailed expositions

on these concepts and important results concerning spherical harmonics used in this paper. Erdélyi

et al. (1953, vol. 2, chapter 9) provide detailed accounts focusing on special functions. Here are some

useful results:

Lemma A.1. The following properties hold:

(i) −ΔS is a positive self-adjoint unbounded operator on L2(Sd−1), thus it has orthogonal eigenspaces

and a basis of eigenfunctions;

(ii) Surface harmonics of degree n are eigenfunctions of −ΔS for the eigenvalue ζn,d := n(n+d−2);

(iii) The dimension of the vector space Hn,d of surface harmonics of degree n is

(A.15) h(n, d) :=
(2n+ d− 2)(n + d− 2)!

n!(d− 2)!(n + d− 2)
;

(iv) A system formed of orthonormal bases (Yn,l)
h(n,d)
l=1 of Hn,d for each degree n = 0, . . . ,∞ is

complete in L1(Sd−1), that is, for every f ∈ L1(Sd−1) the following equality holds in the L1(Sd−1)
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sense:

f =

∞∑
n=0

h(n,d)∑
l=1

(f, Yn,l)L2(Sd−1) Yn,l.

Thus h(n, d) is the multiplicity of the eigenvalue ζn,d, and H
n,d is the corresponding eigenspace.

Lemma A.1 (i), (ii) and (iv) give the decomposition

L2(Sd−1) =
⊕
n∈N

Hn,d.

The space of surface harmonics of degree 0 is the one dimensional space spanned by 1. A series

expansion on an orthonormal basis of surface harmonics is called a Fourier series when d = 2, a

Laplace series when d = 3 and in the general case a Fourier-Laplace series.

Orthonormal bases of surface harmonics usually involve parametrization by angles, such as the

spherical coordinates when d = 3 as used by Healy and Kim (1996) or hyperspherical coordinates for

d > 3. Instead, here we work with the decomposition of a function on the spaces Hn,d as presented

in the next definition so that we avoid specific expressions of basis functions.

Definition A.2. The condensed harmonic expansion of a function f in L1(Sd−1) is the series
∑∞

n=0Qn,df ,

where Qn,d is the projector from L2(Sd−1) to Hn,d.

This leads to a simple method both in terms of theoretical developments and practical imple-

mentations. The projector Qn,d can be expressed as an integral operator with kernel

(A.16) qn,d(x, y) =

h(n,d)∑
l=1

Yn,l(x)Yn,l(y),

where (Yn,l)
h(n,d)
l=1 is any orthonormal basis of Hn,d. The kernel has a simple expression given by the

addition formula:

Theorem A.1 (Addition Formula). For every x and y ∈ S
d−1, we have

(A.17) qn,d(x, y) =
�qn,d(x

′y), �qn,d(t) :=
h(n, d)C

ν(d)
n (t)

|Sd−1|Cν(d)
n (1)

where Cν
n are Gegenbauer a and ν(d) = (d− 2)/2.

The Sobolev spaces are defined in the Fourier-Laplace domain through the fractional Laplacian

defined on a certain subset of Lp(Sd−1) as

(A.18)
(−ΔS

)s/2
f :=

∞∑
n=0

ζ
s/2
n,dQn,df.
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For the case where p = 2, in stead of the definition of the norm ‖ · ‖p,s given in Section 3 it is also

possible to use an equivalent norm, the square of which is equal to

∞∑
n=0

(1 + ζn,d)
s ‖Qn,df‖22.

The following integration by parts holds for functions f in H1(Sd−1)

(A.19) −
∫
Sd−1

f(x)ΔSf(x)dσ(x) =

∫
Sd−1

∇S
xf

′∇S
xfdσ(x)

and as a consequence for the second definition of the norm of H1(Sd−1) we have

‖f‖22,1 = ‖f‖22 + ‖∇Sf‖22.

In Section A.1.1 we observed the close relationship between the random coefficients binary

choice model and convolution for d = 2. This connection remains valid in higher dimensions. Suppose

a function f(x, y) defined on S
d−1 ⊗ S

d−1 depends on x and y only through the spherical distance

d(x, y) = arccos(x′y) (that is, f is a zonal function). Consider the following integral:

h(x) =

∫
Sd−1

f(x, y)g(y)dσ(y) := f ∗ g(x),

then the function h is a convolution on the sphere. We now see that the choice probability function

r(x) = H(fβ)(x) =
∫
Sd−1 I{x′b ≥ 0}fβ(b)dσ(b) is a special case of h and therefore can also be regarded

as convolution. Obtaining fβ from r (or, inverting H) is therefore a deconvolution problem.

In what follows we often write f(x, 	) when a function f on S
d−1 ⊗ S

d−1 is regarded as a

function of 	. Also, the notation ‖f(x, 	)‖p is used for the Lp norm of f(x, 	), that is, ‖f(x, 	)‖p =∫
Sd−1 |f(x, y)|pdσ(y). Note that if f is a zonal function as in the above definition of spherical convolu-

tion, its Lp norm ‖f(x, 	)‖p does not depend on x. The following Young inequalities for convolution

on the sphere (see, for example, Kamzolov, 1983) are useful:

Proposition A.2 (Young inequalities). Suppose f(x, 	) and g belong to Lr(Sd−1) and Lp(Sd−1),

respectively. Then h(x) = f ∗ g(x) is well-defined in Lq(Sd−1) and

‖h‖q ≤ ‖f‖r‖g‖p,

where 1 ≤ p, q, r ≤ ∞ and 1
q = 1

p + 1
r − 1.

Let PT denote the projection operator onto
⊕T

n=0H
n,d, i.e.

(A.20) PT f(x) =

T∑
n=0

Qn,df(x) =

∫
Sd−1

DT (x, y)f(y)dσ(y)
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where

DT (x, y) =
T∑

n=0

qn,d(x, y).

The kernel DT extends the classical Dirichlet kernel on the circle to the sphere S
d−1. The sum over

T in the definition of DT also has the simple closed form in terms of derivatives of Gegenbauer

polynomials; see Equation (52) in Müller (1966). The linear form f → ∫
Sd−1 DT (x, y)f(y)dσ(y)

converges to
∫
Sd−1 f(y)dδx(y) = f(x) as T goes to infinity, where δx denotes the Dirac measure. The

Dirichlet kernel yields the best approximation PT f of f in L2(Sd−1) by polynomials that belong to⊕T
n=0H

n,d, but is known to have flaws. For example, DT does not satisfy

∀f ∈ L1(Sd−1), lim
T→∞

‖DT ∗ f − f‖L1(Sd−1) = 0,

that is, the sequence DT , T = 0, 1, ... is not an approximate identity (see, e.g., Devroye and Gyorfi

1985) in L1(Sd−1). Indeed, the L1(Sd−1) norm of the kernel is not uniformly bounded; more precisely,

we have

(A.21) ‖DT (·, x)‖1 � T (d−2)/2

when d ≥ 3 and

(A.22) ‖DT (·, x)‖1 � log T

when d = 2 (as noted above, these norms do not depend on the value of x ∈ S
d−1). These bounds

can be found in Gronwall (1914) for d = 3 and Ragozin (1972) and Colzani and Traveglini (1991) for

higher dimensions. Also, DT does not have good approximation properties in L∞(Sd−1); in particular,

we do not have

∀f ∈ L∞(Sd−1), lim
T→∞

‖DT ∗ f − f‖L∞(Sd−1) = 0.

Near the points of discontinuity of f , DT ∗ f has oscillations which do not decay to zero as T grows to

infinity, known as the Gibbs oscillations. This phenomenon deteriorates as the dimension increases.

These problems can be addressed by using kernels that involves extra smoothing instead of the Dirich-

let kernel DT . To this end, define a general class of kernel

(A.23) KT (x, y) =
T∑

n=0

χ(n, T )qn,d(x, y)

for some sequence χ(n, T ). These are called smoothed projection kernels. Typically the function χ

is chosen so that it puts more weight on lower frequencies. In particular we impose the following

conditions:
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Assumption A.1. (i) ‖KT (x, 	)‖1 is uniformly bounded in T .

(ii) There exists constants C and α such that for all x, y, z ∈ S
d−1,

|KT (z, x)−KT (z, y)| ≤ C‖x− y‖Tα,

where ‖ · ‖ denotes the Euclidean norm.

(iii) For p ∈ [1,∞] and s > 0, there exists a constant C such that for every f in Ws
p(S

d−1),∥∥∥∥f(·)− ∫
Sd−1

KT (·, y)f(y)dσ(y)
∥∥∥∥
p

≤ CT−s ‖f‖p,s .

(iv) χ(·, T ) takes values in [0, 1] and is such that there exists c > 0 such that for all 0 ≤ n ≤ �T/2�,
χ (n, T ) ≥ c.

The smoothed projection kernel KT (x, y) depends on x and y only through d(x, y), thus the

value of the norm ‖KT (x, 	)‖1 in Assumption (i) does not depend on x ∈ S
d−1. Assumption (i) could

be relaxed, but imposing this on KT allows us to make relatively weak assumptions on the smoothness

of the density of the covariates later in this paper. Assumption (ii) is used to establish the L∞-rates

of convergence of our estimators. Assumption (iii) provides bounds for approximation errors. Under

this condition, KT ∗ f approximates f ∈ Lp(Sd−1) with an error of the same order as that of the

best n-th degree spherical harmonic approximation of a function f ∈ Lp(Sd−1) in Ws
p(S

d−1) (see e.g.

Kamzolov 1983 and Ditzian 1998). This is useful in our treatment of the bias terms in our estimators.

As concrete examples, the following two choices for the weight function χ in (A.23) satisfy Assumption

A.1, as shown in the appendix. The first and the second choices of χ correspond to the Riesz kernel

and the delayed means kernel, respectively.

Proposition A.3. In the definition of the smoothed kernel (A.23), let

χ(n, T ) =

(
1−

(
ζn,d

ζT,d + 1

)s/2
)l

,

where l is an integer satisfying l > (d− 2)/2, or

χ(n, T ) = ψ(n/T )

where ψ : [0,∞) → [0,∞) is infinitely differentiable, nonincreasing, such that ψ(x) = 1 if x ∈ [0, 1],

0 ≤ Ψ(x) ≤ 1 if x ∈ [1, 2], ψ(x) = 0 if x ≥ 2. Then KT satisfies Assumption A.1.

The delayed means kernel has the nice property that it does not require prior knowledge of the

regularity s in Assumption A.1. The Dirichlet kernel satisfies (ii), (iii) (for p = 2) and (iv) of
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Assumption A.1. Like the delayed means kernel, it achieves the optimal rate of approximation without

the prior knowledge of s.

Proof of Proposition A.3. First consider the Riesz kernel. (i) follows from (2.4) in Ditzian (1998)

and by the fact that Cesàro kernels C l
h are uniformly bounded in L1(Sd−1) for l > d−2

2 (see, e.g.

Bonami and Clerc 1973, p. 225). To show (iii) we use Theorem 4.1 in Ditzian (1998), by letting

P (D) = ΔS, λ = ζT,d + 1 = T (T + d− 2) + 1, α = s/2 and m = 1. Then it implies an approximation

error upper bound CKs/2(f,Δ
S, (ζT,d+1)−

s
2 ), which, in turn, is bounded by CT−s‖(−ΔS)s/2f‖p (see

equations (4.2) and (4.1) therein). By the definition of the norm of the Sobolev space W s
p (S

d−1) (see

(3.6)) the result follows. Concerning the delayed means, (i) follows from Theorem 2.2 and Proposition

2.5 of Narcowich et al. (2006). (ii) corresponds to Lemma 2.6 in Narcowich et al. (2006). To see (iii),

use Lemma 2.4 (c) in Narcowich et al. (2006) to obtain an upper bound C inf
g∈⊕T/2

n=0 H
n,d ‖f − g‖p.

Let λ = ζT/2,d + 1 = T
2 (

T
2 + d− 2) + 1, α = s/2,m = 1, P (D) = ΔS in Ditzian’s (1998) Theorem 6.1,

which gives an upper bound on the best spherical harmonic approximation in Lp(Sd−1) to functions

in Ws
p(S

d−1) (see also Kamzolov, 1983), then apply equation (4.1) in Ditzian (1998) again to obtain

the desired result. �

If the function f is in L2(Sd−1) then Equations (A.17) and (A.11) imply that Q2p,df(x) =

Q2p,df(−x) and Q2p+1,df(x) = −Q2p+1,df(−x) for p ∈ N. Consequently, the odd order terms in

the condensed harmonic expansions of f , f+ and f− satisfy Q2p+1f
− = Q2p+1f and Q2p+1f

+ = 0.

Likewise, for the even order terms in the condensed harmonic expansions of these functions Q2pf
+ =

Q2pf and Q2pf
− = 0 hold. We conclude that the sum of the odd order terms in the condensed

harmonic expansion corresponds to f− and that of the even order terms to f+. As anticipated from

the analysis of the d = 2 case, the operator H reduces the even part of fβ to a constant 1
2 , therefore

Fourier-Laplace series expansions for fβ derived later involve only odd order terms.

We now provide a formula that is used to obtain our estimator for fβ. If a non-negative function

f has its support included in some hemisphere of Sd−1 then

(A.24) f(x) = 2f−(x)I
{
f−(x) > 0

}
.

Denote the support of f by suppf and let −suppf = {x|−x ∈ suppf}, then this formula follows from

the fact that f−(x) = f+(x) ≥ 0 on suppf while f−(x) = −f+(x) ≤ 0 on −suppf and both f− and

f+ are 0 on S
d−1 \ (suppf ⋃−suppf).
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Remark A.2. If f is a probability density function, the coefficient of degree 0 in the expansion of f

on surface harmonics is 1/|Sd−1|. Conversely, any harmonic polynomial or series such that its degree

0 coefficient is 1/|Sd−1| integrates to one.

The next theorem shows that Fourier-Laplace series on the sphere is a natural tool for the

study of the operator H.

Theorem A.2 (Funk-Hecke Theorem). If g belongs to Hn,d for some n, and a function F on (−1, 1)

satisfies ∫ 1

−1
|F (t)|2(1− t2)(d−3)/2dt <∞,

then

(A.25)

∫
Sd−1

F (x′y)g(y)dσ(y) = λn(F )g(x)

where

λn(F ) = |Sd−2|Cν(d)
n (1)−1

∫ 1

−1
F (t)Cν(d)

n (t)(1− t2)
d−3
2 dt.

In other words, the kernel operator defined by

f ∈ L2(Sd−1) �→
(
x �→

∫
Sd−1

F (x′y)f(y)dσ(y)
)

∈ L2(Sd−1)

is, in the subspace Hn,d, equivalent to the multiplication by λn(F ). Thus a basis of surface harmonics

diagonalizes an integral operator if its kernel is a function of the scalar product x′y.

Remark A.3. Healy and Kim (1996) use Fourier-Laplace expansions to analyze a deconvolution prob-

lem on S
2. As we shall see below, the Addition Formula along with condensed harmonic expansions

provide a general treatment that works for arbitrary dimensions.

A.1.4. The Hemispherical Transform. The hemispherical transform H, defined by Hf(x) =∫
Sd−1 I{x′y ≥ 0}f(y)dσ(y), plays a central role in our analysis. It is a special case of the operator

considered in the Funk-Hecke theorem above, with F (t) = I{t ∈ [0, 1]}, therefore the next proposition
follows.

Notation. We define λ(n, d) = λn (I {t ∈ [0, 1]}) for d ≥ 3 and λ(n, 2) = 2 sin(nπ/2)
n .

Proposition A.4. When d ≥ 2, the coefficients λ(n, d) have the following expressions

(i) λ(0, d) = |Sd−1|
2

(ii) λ(1, d) = |Sd−2|
d−1
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(iii) ∀p ∈ N \ {0}, λ(2p, d) = 0

(iv) ∀p ∈ N, λ(2p + 1, d) = (−1)p |Sd−2|1·3···(2p−1)
(d−1)(d+1)···(d+2p−1) .

Proof of Proposition A.4. Define α(n, d) := C
ν(d)
n (1)|Sd−2|−1λn (I {t ∈ [0, 1]}). By the Funk-Hecke

theorem

α(n, d) =

∫ 1

0
Cν(d)
n (t)(1− t2)(d−3)/2dt,

thus using (A.7),

α(n, d) =
(−2)−n(d− 2)n
n! ((d− 1)/2)n

∫ 1

0

dn

dtn
(1− t2)n+(d−3)/2dt.

Therefore for n ≥ 1 and d ≥ 3,

α(n, d) = −(−2)−n(d− 2)n
n! ((d− 1)/2)n

dn−1

dtn−1
(1− t2)n−1+(d−3)/2dt

∣∣∣∣
t=0

since the term on the right hand-side is equal to 0 for t = 1. To prove that the coefficients α(2p, d)

are equal to zero for p positive it is enough to prove

d2p+1

dt2p+1
(1− t2)2p+1+m

∣∣∣∣
t=0

= 0, ∀m ≥ 1, p ≥ 0.

The Faá di Bruno formula gives that this quantity is equal to

∑
k1+2k2=2p+1

(−1)2p+1−k2(2p + 1)!(m+ 1) · · · (2p + 1 +m)

k1!k2!
(1− t2)m+k2(2t)k1

∣∣∣∣∣∣
t=0

.

and the result follows since k1 in the sum cannot be equal to 0.

When n = 2p+1 for p ∈ N we obtain, again using the Faá di Bruno formula, that the derivative

at t = 0 is equal to

(−1)p
(2p)!

p!
[(2p + 1 + (d− 3)/2)(2p + (d− 3)/2) · · · (p + 2 + (d− 3)/2)] .

Together with (A.9), the desired result follows. For the case d = 2 we use Proposition A.1. �

Define L2
odd(S

d−1) and Hs
odd(S

d−1) as the restrictions of L2(Sd−1) and Hs(Sd−1) to odd functions

and similarly L2
even(S

d−1) and Hs
even(S

d−1) for even functions. The following corollary is a direct

consequence of the Funk-Hecke Theorem and Proposition A.4, and corresponds to an observation

made in Remark A.1 for the d = 2 case.

Corollary A.1. The null space of the hemispherical transform H is given by

ker H =

∞⊕
p=1

H2p,d =

{
f ∈ L2

even(S
d−1) :

∫
Sd−1

f(x)dσ(x) = 0

}
,
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when H is viewed as an operator on L2(Sd−1). The spaces H0,d and H2p+1,d for p ∈ N are the

eigenspaces associated with the non-zero eigenvalues of H.

As a consequence of Proposition A.4, H is not injective and restrictions have to be imposed

in order to ensure identification of fβ. Section 3 presents sufficient conditions that allows us to

reconstruct fβ from f−β .

The following proposition can be found in Rubin (1999).

Proposition A.5. H is a bijection from L2
odd(S

d−1) to H
d/2
odd(S

d−1).

Lemma A.2.

h(n, d) � nd−2,(A.26)

|λ(2p + 1, d)| � p−d/2.(A.27)

Proof. Estimate (A.26) is clearly satisfied when d = 2 and 3 since h(n, 2) = 2 and h(n, 3) = 2n + 1.

When d ≥ 4 we have

h(n, d) =
2

(d− 2)!
(n+ (d− 2)/2)[(n + 1)(n + 2) · · · (n+ d− 3)],

and the results follow.

Next we turn to (A.27). When d is even and p ≥ d/2

|λ(2p + 1, d)| = κd
(2p + 1)(2p + 3) · · · (2p+ d− 1)

where

κd =
|Sd−2|1 · 3 · · · (d− 1)

d− 1

and (A.27) follows. Sterling’s double inequality (see Feller (1968) p.50-53), that is,

√
2πnn+1/2 exp

(
−n+

1

12n + 1

)
< n! <

√
2πnn+1/2 exp

(
−n+

1

12n

)
,

implies that
(2pp!)2

(2p)!
� √

p

and therefore

1 · 3 · · · (2p − 1) � √
p2 · 4 · · · (2p).

Thus for p ≥ d/2 and d odd we have

|λ(2p + 1, d)| �
√
p

(2p + 2)(2p + 4) · · · (2p+ d− 1)

and (A.27) holds for both even and odd d. �
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We can now easily check that

Proposition A.6. For all s > 0, there exists positive constants Cl and Cu such that for all f in

Hs(Sd−1)

Cl

∥∥f−∥∥
2,s

≤ ∥∥H(f−)
∥∥
2,s+d/2

≤ Cu

∥∥f−∥∥
2,s
.

Proof of Proposition A.6. By definition we have

‖H (
f−

) ‖22,s+d/2 =
∞∑
p=0

(1 + ζ2p+1,d)
s+d/2‖Q2p+1,dH(f−)‖22

where according to the Funk-Hecke Theorem

Q2p+1,dH(f−) = Q2p+1,dH
⎛⎝ ∞∑

q=0

Q2q+1,df

⎞⎠
= Q2p+1,d

⎛⎝ ∞∑
q=0

λ(2q + 1, d)Q2q+1,df

⎞⎠
= λ(2p+ 1, d)Q2p+1,df.

The result follows since Lemma A.2 implies that (1 + ζ2p+1,d)
s+d/2λ2(2p+ 1, d) � (1 + ζ2p+1,d)

s. �

The factor d/2 in Proposition A.6 corresponds to the degree of “regularization” due to smooth-

ing by H. Now the inverse of an odd function f− is given by

(A.28) H−1(f−)(y) =
∞∑
p=0

1

λ(2p + 1, d)

∫
Sd−1

q2p+1,d(x, y)f
−(x)dσ(x).

This is straightforward given our results at hand: for example, operate H on the RHS to see:

H
⎛⎝ ∞∑

p=0

1

λ(2p + 1, d)

∫
Sd−1

q2p+1,d(x, y)f
−(x)dσ(x)

⎞⎠ =

∞∑
p=0

1

λ(2p + 1, d)
HQ2p+1,df

−

=

∞∑
p=0

λ(2p + 1, d)

λ(2p + 1, d)
Q2p+1,df

− (by the Funk-Hecke Theorem)

= f−.

If f− belongs to Hd/2(Sd−1), then H−1(f−)(b) is a well-defined L2(Sd−1) function. Otherwise it

should be understood as a distribution and is only defined in a Sobolev space with negative exponent.

Moreover, if d is a multiple of 4, it is possible to relate the inverse of the operator H with differentiation

as in the case of d = 2:
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Proposition A.7. If d is a multiple of 4,

H−1 = |Sd−2|
d/4∏
k=1

[−ΔS + 2(k − 1)(d − 2k)].

Proof of Proposition A.7. If we consider the case where d is even, we know from Proposition A.4,

that
1

λ(2p + 1, d)
= (−1)p|Sd−2|(2p + 1)(2p + 3) . . . (d+ 2p− 1).

Thus if d is a multiple of 4,

1

λ(2p + 1, d)
= |Sd−2|

d/4∏
k=1

[−ζ2p+1,d + 2(k − 1)(d − 2k)].

Using this and (4.1),

H−1 =

∞∑
p=0

1

λ(2p + 1, d)
Q2p+1,d

=

∞∑
p=0

|Sd−2|
⎛⎝ d/4∏

k=1

[−ζ2p+1,d + 2(k − 1)(d − 2k)]

⎞⎠Q2p+1,d.

Recall (A.18) and the proposition is proved. �

This connection between the inverse of H and differentiation suggests that a Bernstein-type inequality

might hold for H−1. Indeed, even though the above inversion formula is concerned with d’s that are

multiples of 4, the following Bernstein inequality holds for every dimension.

Theorem A.3 (Bernstein inequality). For every d ≥ 2 and every q ∈ [1,∞], there exists a positive

constant B(d, q) such that for all P in
⊕T

p=0H
2p+1,d,

(A.29) ‖H−1P‖q ≤ B(d, q)T d/2‖P‖q.

Proof of Theorem A.3. We can write

H−1 = P1(D)− P2(D)

where P1(D) and P2(D) are defined for all odd function f− by

P1(D)f− =

∞∑
p=0

1

λ(4p + 3)

∫
Sd−1

q4p+3(x, y)f
−(x)dσ(x)

P2(D)f− = −
∞∑
p=0

1

λ(4p + 1)

∫
Sd−1

q4p+1(x, y)f
−(x)dσ(x).
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P1(D) and P2(D) are two unbounded operators on B = Lq
odd(S

d−1) with non-positive eigenvalues. We

apply Theorem 3.2. of Ditzian (1998) to −P1(D) and −P2(D) choosing α = 1. Condition (1.6) of

Ditzian (1998) can be verified using Proposition 2.2 with r = 1 and p = q and the fact that for the

Cesaro kernels C l
h are uniformly bounded in L1(Sd−1) for l > d−2

2 (see, e.g. Bonami and Clerc, 1973).

We see, using the triangle inequality, that for all P in
⊕T

p=0H
2p+1,d,

‖H−1P‖q ≤ C
1

λ2(2T + 1, d)
‖P‖q

≤ CT d‖P‖q.

The last inequality follows from (A.27). �

Rubin (1999) gives other inversion formulas for the Hemispherical transform in terms of dif-

ferential operators. The fact that the inversion roughly corresponds to differentiation is another

manifestation of the ill-posedness of our problem at hand. The inverse operator H−1 is indeed un-

bounded. We call the factor d/2 in (A.29) the degree of ill-posedness of the inverse problem. For the

case q = 2, there exists a lower bound for ‖H−1P‖q in (A.29) of order T d/2 as well, implying that the

upper bound T d/2 in the order of T obtained in Theorem A.3 is tight.

A.1.5. Estimators for the Choice Probability Function. This section considers estimation of

the choice probability function r and its extension R. We propose an estimator for r, which, in turn,

yields a computationally simple estimator for fβ. Also the asymptotic results presented here are useful

for the next section where we study the limiting properties of our estimator for the random coefficients

density fβ.

Since R is square integrable on S
d−1, it has a condensed harmonic expansion which enables us

to obtain the expressions in the next theorem.

Theorem A.4. For x in S
d−1, we have

(A.30) R(x) =
1

2
+

∞∑
p=0

E

[
(2Y − 1)

fX(X)
q2p+1,d(X,x)

]
.

This suggests an estimator of the form R̂1(x) =
1
2 + R̂−

1 with

R̂−
1 (x) =

1

N

N∑
i=1

(2yi − 1)

f̂X(xi)

TN∑
p=0

q2p+1,d(xi, x)

where f̂X is an estimator of fX and TN is a suitably chosen sequence diverging to infinity with N .

Note that the second summation corresponds to the Dirichlet kernel. We can generalize this, by
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introducing a class of estimators of the form

(A.31) R̂−
2 (x) =

1

N

N∑
i=1

(2yi − 1)

f̂X(xi)
K−

2TN
(xi, x)

where K−
2TN

is the odd part of a kernel of the form (A.23) satisfying Assumption A.1, such as the two

kernels in Proposition A.3.

The estimator (A.31) is convenient, though the plug-in term f̂X has to be treated with care.

We avoid restrictive assumptions on the distributions of covariates and allow fX(x) to decay to zero

as x approaches the boundary of its support H+. To deal with the latter problem, we modify (A.31)

by

(A.32) R̂−(x) =
1

N

N∑
i=1

(2yi − 1)K−
2TN

(xi, x)

max
(
f̂X(xi),mN

)
where mN is a trimming factor going to 0 with the sample size. Our estimator for R is then

(A.33) R̂ =
1

2
+ R̂−.

Remark A.4. Alternative estimators of R− are available. For example, one may use kernel regression

on the sphere to estimate r in order to obtain an estimator for R−. As noted before, however, we

then need to use numerical integration to evaluate (4.5) to calculate f̂−β .

Proof of Theorem A.4. R has the following condensed harmonic expansion

R(x) =
1

2
+

∞∑
p=1

(Q2p+1,dR)(x).

We then write using (3.2), changing variables and using (A.11),

(Q2p+1,dR)(x) =

∫
Sd−1

q2p+1,d(x, z)R(z)dσ(z)

=

∫
H+

q2p+1,d(x, z)r(z)dσ(z) +

∫
H−

q2p+1,d(x, z)(1 − r(−z))dσ(z)

=

∫
H+

q2p+1,d(x, z)r(z)dσ(z) −
∫
H+

q2p+1,d(x, z)(1 − r(z))dσ(z)

=

∫
H+

q2p+1,d(x, z)(2r(z) − 1)dσ(z)

=

∫
H+

q2p+1,d(x, z)E

[
2Y − 1

fX(z)

∣∣∣∣X = z

]
fX(z)dσ(z)

= E

[
(2Y − 1)q2p+1,d(x,X)

fX(X)

]
.

�



A-17

A.1.6. Proofs of Main Results.

Proof of Proposition 3.1. It is straightforward that the model (1.1) and Assumption 1.1 imply

that the choice probability function r given by (1.2) is homogeneous of degree 0. Proposition A.5

along with the fact that R = 1
2 +H

(
f−β

)
with f−β ∈ L2

odd(S
d−1) implies that R belongs to Hd/2(Sd−1).

We now turn to the proof of sufficiency. If the extension R given by (3.2) belongs to Hd/2(Sd−1) then

so does R− and Proposition A.5 shows that there exists a unique odd function f− in L2(Sd−1) such

that

R =
1

2
+H (

f−
)
= H

(
1

|Sd−1| + f−
)
.

Moreover, since 0 ≤ R(x) ≤ 1 holds for every x ∈ S
d−1, the above relationship implies that 1

2 ≥
Hf−(x),∀x ∈ S

d−1. But Hf−(x) ≥ ∫
{f−(b)≥0} f

−(b)dσ(b) holds for some x. Therefore we conclude

that 1
2 ≥ ∫

{f−(b)≥0} f
−(b)dσ(x) = − ∫

{f−(b)≤0} f
−(b)dσ(b), thus

∫
Sd−1 |f−(b)|dσ(b) ≤ 1. Also, following

the discussion in Section A.1.3, 1
|Sd−1| + f− integrates to 1. We have seen in Corollary A.1 that for

even function g that has 0 as the coefficient of degree 0 in its expansion on the surface harmonics (i.e.

an even function that integrates to zero over the sphere),

R = H
(
g +

1

|Sd−1| + f−
)

holds. Now consider

g = |f−| − 1

|Sd−1|
∫
Sd−1

|f−(b)|dσ(b),

then this certainly is even and integrates to zero. Using this, define

f∗β := g +
1

|Sd−1| + f− = 2f−I{f− > 0}+ 1

|Sd−1|
(
1−

∫
Sd−1

|f−(b)|dσ(b)
)

≥ 0.

Obviously f∗β
− = f−. This function f∗β is non-negative and integrates to one, and thus it is a proper

probability density function (pdf). It is indeed bounded from below by 1
|Sd−1|

(
1− ∫

Sd−1 |f−(b)|dσ(b)
)
.

As a consequence, there exists a pdf f∗β such that

R = H (
f∗β

)
=

1

2
+H (

f∗β
−)

and for all x in H+, r(x) = H
(
f∗β

)
(x). �

Proof of Theorem 4.1. We use the shorthand notation I(b) := I{f−β (b) > 0} and Î(b) := I{f̂−β (b) >

0}. Then fβ = 2f−β I and f̂β = 2f̂−β Î. We write

f
−
β,T (b) =

1

N

N∑
i=1

(2yi − 1)H−1
(
K−

2TN
(xi, ·)

)
(b)

max (fX(xi),mN )
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f
−
β (b) =

1

N

N∑
i=1

(2yi − 1)H−1
(
K−

2TN
(xi, ·)

)
(b)

fX(xi)

and use the decomposition

(A.34) f̂−β − f−β =
(
f̂−β − f

−
β,T

)
+

(
f

−
β,T − E

[
f

−
β,T

])
+

(
E

[
f

−
β,T

]
− E

[
f

−
β

])
+

(
E

[
f

−
β

]
− f−β

)
,

and denote the terms on the right hand side by Sp (stochastic component due to plug-in), Se (stochastic

component of the infeasible estimator f
−
β,T ), Bt (trimming bias) and Ba (approximation bias).

Take q ∈ [1,∞),

‖f̂β − fβ‖qq =
∫

(f̂β(b)− fβ(b))
qdσ(b)

=

∫
I(b)=1,̂I(b)=1

(f̂β(b)− fβ(b))
qdσ(b) +

∫
I(b)=0,̂I(b)=1

(f̂β(b)− fβ(b))
qdσ(b)

+

∫
I(b)=1,̂I(b)=0

(f̂β(b)− fβ(b))
qdσ(b) +

∫
I(b)=0,̂I(b)=0

(f̂β(b)− fβ(b))
qdσ(b)

:=A1 +A2 +A3 +A4.

Obviously

A1 =

∫
I(b)=1,̂I(b)=1

(2f̂−β (b)− 2f−β (b))qdσ(b)

and A4 = 0. Also,

A2 =

∫
I(b)=0,̂I(b)=1

(2f̂−β (b)− fβ(b))
qdσ(b).

But given I(b) = 0 and Î(b) = 1, 2f̂−β (b) > 0, fβ(b) = 0 and 2f−β (b) ≤ 0, so replacing fβ with 2f−β in

the bracket,

A2 ≤
∫
I(b)=0,̂I(b)=1

(2f̂−β (b)− 2f−β (b))qdσ(b).

Similarly,

A3 =

∫
I(b)=1,̂I(b)=0

(f̂β(b)− 2f−β (b))qdσ(b).

and given I(b) = 1 and Î(b) = 0, 2f−β (b) > 0, f̂β(b) = 0 and 2f̂−β (b) ≤ 0, so replacing fβ with 2f−β in

the bracket,

A3 ≤
∫
I(b)=0,̂I(b)=1

(2f̂−β (b)− 2f−β (b))qdσ(b).

Overall,

‖f̂β − fβ‖qq ≤ 2q‖f̂−β − f−β ‖qq.
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A similar proof can be carried out replacing Lq(Sd−1) by L∞(Sd−1). Thus it is enough to consider

the behavior of f̂−β − f−β instead of f̂β − fβ. As noted above, the former can be decomposed into four

terms, Sp, Se, Bt and Ba.

We start with the analysis of Sp. Note that for q ∈ [1,∞]

‖Sp‖q =
∥∥∥∥∥∥H−1

⎛⎝ 1

N

N∑
i=1

(2yi − 1)K−
2TN

(xi, ·)
max(fX(xi),mN )

⎛⎝ max (fX(xi),mN )

max
(
f̂X(xi),mN

) − 1

⎞⎠⎞⎠∥∥∥∥∥∥
q

≤ B(d, q)T
d/2
N

∥∥∥∥∥∥ 1

N

N∑
i=1

(2yi − 1)K−
2TN

(xi, ·)
max(fX(xi),mN )

⎛⎝ max (fX(xi),mN )

max
(
f̂X(xi),mN

) − 1

⎞⎠∥∥∥∥∥∥
q

(by Theorem A.3)

≤ B(d, q)T
d/2
N m−1

N

∥∥∥∥∥ 1

N

N∑
i=1

|K2TN
(xi, ·)|

∥∥∥∥∥
q

max
i=1,...,N

∣∣∣∣∣∣ max (fX(xi),mN )

max
(
f̂X(xi),mN

) − 1

∣∣∣∣∣∣
≤ B(d, q)T

d/2
N m−2

N

∥∥∥∥∥ 1

N

N∑
i=1

|K2TN
(xi, ·)|

∥∥∥∥∥
q

max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣

holds, where we have used the triangle inequality. The Lq-norm on the right hand side is bounded

from above by

(A.35)

∥∥∥∥∥ 1

N

N∑
i=1

|K2TN
(xi, ·)| − E |K2TN

(X, ·)|
∥∥∥∥∥
q

+ ‖E |K2TN
(X, ·)|‖q := ‖T1‖q + ‖T2‖q.

First consider the term ‖T1‖q. We begin with the case of q ∈ [1, 2]. By the Hölder inequality,

E
[‖T1‖qq] = ∫

Sd−1

E [T1(x)
q] dσ(x)

≤
∫
Sd−1

E
[
T1(x)

2
]q/2

dσ(x)

where

E
[
T1(x)

2
] ≤ 1

N
E

[
(K2TN

(X,x))2
]

(A.36)

≤ C

N
‖K2TN

(	2, x)‖22 (boundedness assumption on fX)

=
C

N

∥∥∥∥∥
2TN∑
n=0

χ(n, 2TN )qn,d(	2, x)

∥∥∥∥∥
2

2

≤ C

N

2TN∑
n=0

‖qn,d(	2, x)‖22 (by Assumption A.1(iv))
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≤ C

N

2TN∑
n=0

h2(n, d)
∥∥∥Cν(d)

n (	′2x)
∥∥∥2
2

|Sd−1|2(Cν(d)
n (1))2

≤ C

N

2TN∑
n=0

h(n, d) (by (A.12))

≤ CT d−1
N

N
(by Lemma A.2).

By the Markov inequality,

(A.37) T
d/2
N m−2

N ‖T1‖q = Op

(
m−2

N N−1/2T
(2d−1)/2
N

)
,

providing a convergence rate for ‖T1‖q, q ∈ [1, 2]. So if we can establish a similar rate for ‖T1‖∞,

all Lq(Sd−1) convergence rates of T1 for q ∈ (2,∞] can be interpolated between the L2(Sd−1) and

L∞(Sd−1) convergence rates using the following inequality:

(A.38) ∀f ∈ L∞(Sd−1), ‖f‖q ≤ ‖f‖2/q2 ‖f‖1−2/q
∞ .

To see this, note

‖f‖q = ‖f2|f |q−2‖1/q1

≤ [‖f2‖1‖|f |q−2‖∞
]1/q

(by Hölder)

= ‖f‖2/q2 ‖f‖1−2/q
∞ .

We can thus focus on ‖T1‖∞. We cover the sphere Sd−1 by N(N, d) geodesic balls (caps) (Bi)
N(N,d)
i=1 of

centers (x̃i)
N(N,d)
i=1 and radius R(N, d), that is, Bi = {x ∈ S

d−1 : ‖x− x̃i‖ ≤ R(N, d)}. As the notation
suggests, we let the radius of the balls depend on N and d, as specified more precisely below. Note

that N(N, d) � R(N, d)−(d−1).

We now prove that for every ε > 0 positive, there exists a positive M such that

(A.39) P

(
vNT

d/2
N m−2

N sup
x∈Sd−1

|T1(x)| ≥M

)
≤ ε

holds for an appropriately chosen sequence vN ↑ ∞. Write

P

(
vNT

d/2
N m−2

N sup
x∈Sd−1

|T1(x)| ≥M

)
(A.40)

≤ P

⎛⎝ ⋃
i=1,...,N(N,d)

{
vNT

d/2
N m−2

N |T1(x̃i)| ≥M/2
}⎞⎠
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+ P

(
∃i ∈ {1, . . . ,N(N, d)} : vNT

d/2
N m−2

N sup
x∈Bi

|T1(x)− T1(x̃i)| ≥M/2

)
≤ N(N, d) sup

i=1,...,NN

P

(
vNT

d/2
N m−2

N |T1(x̃i)| ≥M/2
)

where the last inequality is obtained using Assumption A.1 (ii) on the kernel and letting R(N, d) �
m2

Nv
−1
N T

−(d/2+α)
N M (where α is given in Assumption A.1 (ii)). Notice

P

(
vNT

d/2
N m−2

N |T1(x̃i)| ≥M/2
)

(A.41)

= P

⎛⎝∣∣∣∣∣∣
N∑
j=1

|K2TN
(xj, x̃i)|

T d−1
N

− E

[
|K2TN

(X, x̃i)|
T d−1
N

]∣∣∣∣∣∣ ≥ T
−(d−1)
N v−1

N T
−d/2
N m2

NNM/2

⎞⎠
≤ 2 exp

{
−1

2

(
t2

ω + Lt/3

)}
(Bernstein inequality)

where

t = T
−(d−1)
N v−1

N T
−d/2
N m2

NNM/2

ω ≥
N∑
j=1

var

(
|K2TN

(Xj , x̃i)|
T d−1
N

)

∀j = 1, . . . , N,

∣∣∣∣∣K2TN
(Xj , x̃i)

T d−1
N

∣∣∣∣∣ ≤ L (using (A.17) and (A.8)).

The boundL in the last line is obtained by noting that |K2TN
(Xj , x̃i)| =

∣∣∣∑2TN
n=0 χ(n, 2TN )qn,d(Xj , x̃i)

∣∣∣ ≤
C

∑2TN
n=0 |h(n, d)| � T d−1

N , which follows from (A.17), (A.8) and (A.26). Here we can take ω =

CNE[K2TN
(X, x̃i)

2], then by the calculations in (A.36), we can write ω = CNT
−(d−1)
N . ω is the

leading term in the denominator of the exponent in the last inequality.

If we take vN = (logN)−1/2m2
NN

1/2T
−(2d−1)/2
N , then

(A.42)
t2

ω + Lt/3
� (logN)M2.

Also, use this vN in our choice of R(N, d) made above to get:

R(N, d) � m2
Nv

−1
N T

−(d/2+α)
N M = (log(N))1/2N−1/2T

d−1
2

−α

N M

Thus

(A.43) N(N, d) � R(N, d)−(d−1) = exp (C1 logN + o(logN))

for some constant C1 that might be greater than 1
2(d − 1), depending on the value of α. Indeed, TN

does not grow more than polynomially fast in N . (A.40), (A.41), (A.42) and (A.43) imply that, for a



A-22 GAUTIER AND KITAMURA

positive constants C and C2,

(A.44) P

(
vNT

d/2
N m−2

N sup
x∈Sd−1

|T1(x)| ≥M

)
≤ C exp

{
(logN)(C1 − C2M

2)
}

holds. For a large enough M , C1 −C2M
2 < 0 and the right hand side of (A.44) converges to zero, so

(A.39) follows. In summary, we have just shown that

T
d/2
N m−2

N ‖T1‖∞ = Op

(
(logN)1/2m−2

N N−1/2T
(2d−1)/2
N

)
and with (A.37) and (A.38) we also conclude that

T
d/2
N m−2

N ‖T1‖q = Op

(
(logN)1/2−1/qm−2

N N−1/2T
(2d−1)/2
N

)
.

Concerning ‖T2‖q, q ∈ [1,∞], since fX is bounded by assumption, there exists a positive C such that

‖T2‖q ≤ C
∥∥‖K2TN

(	1, 	q)‖1
∥∥
q

where integration in ‖ · ‖1 is with respect to argument 	1 and integration in ‖ · ‖q is with respect to

	q. But ‖K2TN
(	1, 	q)‖1 is a constant and does not depend on 	q, as previously noted. Thus∥∥‖K2TN

(	1, 	q)‖1
∥∥
q
= |Sd−1|1/q ‖K2TN

(	1, 	q)‖1
and we conclude that this term is O(1) using Assumption A.1 (i) on the kernel, thus

T
d/2
N m−2

N ‖T2‖q = O
(
m−2

N T
d/2
N

)
.

Analogously to our treatment of ‖T1‖q, we can prove that when q ∈ [1, 2],

‖Se‖q = Op

(
m−1

N N−1/2T
(2d−1)/2
N

)
,

while for q ∈ (2,∞]

‖Se‖q = Op

(
m−1

N (logN)1/2−1/qN−1/2T
(2d−1)/2
N

)
.

Let us now turn to the bias term induced by trimming

Bt(b) = E

[
(2Y − 1)H−1

(
K−

2TN
(X, ·)) (b)

fX(X)

(
fX(X)

max(fX(X),mN )
− 1

)]

=

∫
{z∈Sd−1: fX (z)<mN}

E[2Y − 1|X = z]H−1
(
K−

2TN
(z, ·)) (b) (fX(z)m−1

N − 1
)
dσ(z).

This yields

|Bt(b)| ≤
∫
Sd−1

∣∣H−1
(
K−

2TN
(z, ·)) (b)∣∣ I{z ∈ S

d−1 : fX(z) < mN

}
dσ(z)

=

∫
Sd−1

∣∣H−1
(
K−

2TN
(b, ·)) (z)∣∣ I{z ∈ S

d−1 : fX(z) < mN

}
dσ(z) (using the condensed Harmonic expansion),
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thus, for every 1 ≤ r ≤ q,

‖Bt‖q ≤
∥∥H−1

(
K−

2TN
(b, ·))∥∥

r
σ (fX < mN )

1/q−1/r+1
(from Proposition A.2)

≤ CB(d, r)T
d/2+(d−1)(1−1/r)
N σ (fX < mN )1/q−1/r+1

where in the last inequality we use Theorem A.3 and calculate an upper bound on the Lr-norm of

the kernel by interpolation, using Hölder’s inequality, between the uniformly bounded L1-norm and

the upper bound on the sup norm of the order of T d−1
N seen previously, C is a constant. We finally

treat Ba using Assumption A.1 (iii) with the condition that f−β ∈ Ws
q(S

d−1):

‖Ba‖q ≤ CT−s
N .

In the case where fX ≥ m σ a.e., we use the decomposition

f̂−β − f−β =
(
f̂−β − f

−
β

)
+

(
f

−
β − E

[
f

−
β

])
+

(
E

[
f

−
β

]
− f−β

)
= S̃p + S̃e +Ba.

Now for example,

‖S̃p‖q ≤ B(d, q)T
d/2
N

∥∥∥∥∥ 1

N

N∑
i=1

|K2TN
(xi, ·)|

∥∥∥∥∥
q

maxi=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣

mini=1,...,N |f̂X(xi)|
,

because f̂X is a consistent estimator in sup norm,

∀ε > 0, ∃N0 > 0 : ∀n ≥ N0, P

(
min

i=1,...,N
|f̂X(xi)| > m

2

)
≤ ε

2
,

and we can treat the terms S̃p and S̃e on this event. �

Proof of the corollaries 4.1, 4.2 and 4.3. The rate γs in Corollary 4.1 comes from the fact that

it coincides with the maximum of

(A.45) min

(
γs,−γ d

2
− ρ+

1

2
− γ

d− 1

2
,−γ d

2
+ rX − 2ρ,−γ d

2
+ ρτ − γ(d− 1)(1 − 1/q)

)
.

for rX/2 ≤ ρ < 1/2 and 0 < γ < 1/(d − 1) which is what we get from (4.9) and (4.10). Indeed, it is

enough to find γ(ρ) as the minimum of

(A.46) min

(
γ

(
s+

d

2

)
,−ρ+ 1

2
− γ

d− 1

2
, rX − 2ρ, ρτ − γ(d− 1)(1 − 1/q)

)
.

The first is an increasing function of γ while the second and fourth are decreasing. The rest follows by

simple computations. The proofs of the convergence in probability on Corollaries 4.2 and 4.3 is similar

and simpler because there is only one parameter γ. In order to prove the strong uniform consistency
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in Corollary 4.1, noticing that the bias terms Bt and Ba are not stochastic and bounded after proper

scaling, we just have to focus on Sp and Se appearing in the proof of Theorem 4.1. Concerning Sp,

proceed as before and note that taking M large enough so that C1−C2M
2 < −1 implies summability

of the left hand side in (A.44). We conclude from the first Borel-Cantelli lemma that the probability

that the events occur infinitely often is zero thus with probability one

limN→∞vNB(d,∞)T
d/2
N m−2

N sup
x∈Sd−1

|T1(x)| < M.

The term T2 is non-stochastic and its treatment in our previous analysis remains valid, therefore we

can use the same non-stochastic upper bound. We then use Assumption 4.2 (iii) instead of Assumption

4.2 (ii) to show almost sure uniform boundedness of Sp after proper rescaling. The treatment of Se is

analogous to that of T1. The proof is the same in Corollaries 4.2 and 4.3. �

Proof of Theorem 4.2. We first prove that the Lyapounov condition holds: there exists δ > 0 such

that for N going to infinity,

(A.47)
E

[
|ZN (b)− E [ZN (b)]|2+δ

]
N δ/2 (var (ZN (b)))1+δ/2

→ 0

(see, e.g. Billingsley, 1995). We start from deriving a lower bound on var (ZN (b)). Since E[ZN (b)]

converges to f−β (b), it is enough to obtain a lower bound on

E[Z2
N ](b) = 4

∫
H+

(
TN−1∑
p=0

χ(2p+ 1, 2TN)
q2p+1,d(z, b)

max (fX(z),mN )λ(2p+ 1, d)

)2

fX(z)dσ(z)

= 4

∫
H+

(
TN−1∑
p=0

χ(2p+ 1, 2TN)
q2p+1,d(z, b)

λ(2p + 1, d)

)2 (
1

fX(z)
I{fX ≥ mN}+ fX(z)m−2

N I{fX < mN}
)
dσ(z)

≥ 4
1

‖fX‖∞

∫
H+

(
TN−1∑
p=0

χ(2p+ 1, 2TN)
q2p+1,d(z, b)

λ(2p+ 1, d)

)2

dσ(z)

− 4
1

‖fX‖∞

∫
{fX<mN}

(
TN−1∑
p=0

χ(2p+ 1, 2TN)
q2p+1,d(z, b)

λ(2p+ 1, d)

)2

dσ(z)

With similar computations as (A.36), using as well (A.27), we know that there exists a constant C

such that ∥∥∥∥∥∥
TN−1∑
p=0

χ(2p+ 1, 2TN )
q2p+1,d(z, 	)

λ(2p+ 1, d)

∥∥∥∥∥∥
2

≤ CT 2d−1
N ,

therefore using Proposition A.2 with p = q = r = 1 we obtain

E[Z2
N ](b) ≥ 4

‖fX‖∞
TN−1∑
p=0

χ(2p+ 1, 2TN)2
∫
H+

q2p+1,d(z, b)
2

λ(2p+ 1, d)2
dσ(z)− CT 2d−1

N σ (fX < mN) .
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Using Assumption A.1 (iv), the first term on the right hand side can be bounded from below by

C

	(TN−1)/2
∑
p=0

∥∥∥∥q2p+1,d(z, b)

λ(2p + 1, d)

∥∥∥∥2
2

i.e. by CT 2d−1
N . Thus as mN decays to zero, σ (fX < mN ) decays to zero and

(A.48) E[Z2
N ](b) ≥ CT 2d−1

N .

We now derive an upper bound of E

[
|ZN (b)|2+δ

]
using Theorem A.3 and interpolation between

L∞(Sd−1) and L1(Sd−1) norms of the kernels using the Hölder inequality:

E

[
|ZN |2+δ

]
≤ ‖fX‖∞m−(2+δ)

N

∥∥∥H−1
(
K−

2TN
(z, ·)

)∥∥∥2+δ

2+δ

≤ ‖fX‖∞m−(2+δ)
N B(d, 2 + δ)2+δT

d(2+δ)/2
N

∥∥∥K−
2TN

(z, ·)
∥∥∥2+δ

2+δ

≤ Cm
−(2+δ)
N T

d(2+δ)/2
N T

(d−1)(1+δ)
N .

By this and (A.48) an upper bound for the ratio appearing in (A.47) is given by

m
−(2+δ)
N

(
T d−1
N

N

)δ/2

.

Therefore the Lyapounov condition is satisfied if (4.20) holds, and it follows that N1/2s−1
N (b)Se

d→
N(0, 1).

We now need to prove that the remaining terms Sp, Bt and Ba, multiplied by N1/2s−1
N (b), are

op(1). The term Sp is treated in a similar manner as in the proof of Theorem 4.1.

|Sp(b)| ≤ 2

⎛⎝ 1

N

N∑
i=1

∣∣∣H−1
(
K−

2TN
(xi, ·)

)
(b)

∣∣∣
max(fX(xi),mN )

⎞⎠ max
i=1,...,N

∣∣∣∣∣∣ max (fX(xi),mN )

max
(
f̂NX (xi),mN

) − 1

∣∣∣∣∣∣ .
Using the Markov inequality, the empirical average in the parenthesis is of the stochastic order of

m−1
N

∥∥∥H−1
(
K−

2TN
(	, ·)

)∥∥∥
1
.

But

m−1
N

∥∥∥H−1
(
K−

2TN
(	, ·)

)∥∥∥
1
≤ B(d, 1)T

d/2
N m−1

N

∥∥∥K−
2TN

(	, ·)
∥∥∥
1

≤ B(d, 1)T
d/2
N m−1

N ‖K2TN
(	, ·)‖1

where the first inequality follows from Theorem A.3 and the second is obtained using the defini-

tion of the odd part and the triangle inequality. Note that the term ‖K2TN
(	, ·)‖1 in the last line
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does not depend on · and is uniformly bounded. By the lower bound (A.48) it is enough to show

N1/2B(d, 1)T
−(d−1/2)
N |Sp(b)| = op(1). From the inequality above,

N1/2B(d, 1)T
−(d−1/2)
N |Sp(b)| ≤

(
N1/2T

−(d−1)/2
N m−1

N

)
max

i=1,...,N

∣∣∣∣∣∣ max (fX(xi),mN )

max
(
f̂X(xi),mN

) − 1

∣∣∣∣∣∣ .
Its right hand side is of op(1) if

max
i=1,...,N

∣∣∣fX(xi)− f̂X(xi)
∣∣∣ = op

(
N−1/2T

(d−1)/2
N m2

N

)
,

which is met under (4.19).

Let us now consider the bias term induced by the trimming procedure. In the proof of Theorem

4.1 we have obtained an upper bound for ‖Bt‖∞ and we deduce that

N1/2T
−(d−1/2)
N ‖Bt‖∞ = o(1)

when condition (4.22) is satisfied. Finally, N1/2T
−(d−1/2)
N ‖Ba‖∞ = o(1) if condition (4.21) is satisfied.

We conclude that the asymptotic normality holds for b such that fβ(b) > 0. The factor 4 in the

variance comes from the fact that f̂β = 2f̂−β Î. �

The proof of Theorem 4.3 is almost the same.
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