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Summary A common concern in the empirical study of auctions is the likely pres-
ence of auction-specific factors that are common knowledge among bidders but unob-
served to the econometrician. Such unobserved heterogeneity confounds attempts to
uncover the underlying structure of demand and information, typically a primary fea-
ture of interest in an auction market. Unobserved heterogeneity presents a particular
challenge in first-price auctions, where identification arguments rely on the econometri-
cian’s ability to reconstruct from observables the conditional probabilities that entered
each bidder’s equilibrium optimization problem. When bidders condition on unobserv-
ables, it is not obvious that this is possible. Here we discuss several approaches to
identification developed in recent work on first-price auctions with unobserved hetero-
geneity. Despite the special challenges of this setting, all of the approaches build on
insights developed in other areas of econometrics, including those on control functions,
measurement error, and mixture models. Because each strategy relies on different com-
binations of model restrictions, technical assumptions, and data requirements, their
relative attractiveness will vary with the application. However, this varied menu of re-
sults suggests both a type of robustness of identifiability and the potential for expanding
the frontier with additional work.

Keywords: nonparametric identification, control function, measurement error, finite
mixture, quasi-control function, first-price auctions.

1. INTRODUCTION

The econometrics of auctions has been an active area of research over the last thirty
years.1 Auctions often provide applications in which an economic model can be tightly
matched to actual market institutions, and where the equilibrium relationships obtained
from a rich theoretical literature can often be “inverted” to allow identification and es-
timation of model primitives. This makes auctions attractive for applied work aimed
at combining theory and data to produce quantitative answers to questions about pro-
curement practices, market design, and the roles of strategic behavior and asymmetric
information in determining market outcomes.

In this review we examine recent developments taking on an important challenge in
this literature: unobserved heterogeneity. In many applications one suspects that there
is auction-specific information commonly known among bidders but unavailable to re-
searchers. The presence such unobserved heterogeneity can be important. The underlying

1Surveys of the literature can be found in, e.g., Hendricks and Paarsch (1995), Athey and Haile (2006,
2007), Hendricks and Porter (2007), and Hickman et al. (2012). See also the monograph of Paarsch and
Hong (2006).
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information structure is at the heart of many questions concerning bidder behavior, auc-
tion design, the division of surplus, etc., so the distinction between private information
and information that is merely omitted from the analysis is essential. Accounting for un-
observed heterogeneity is particularly important and challenging in first-price sealed bid
auctions (henceforth “first-price auctions”) because standard identification results rely on
the econometrician’s ability to reconstruct from observables the conditional probabilities
entering bidders’ first-order conditions.2 This strategy is threatened if bidders condition
on common knowledge information unavailable to the researcher.

Further complicating matters is the problem of endogenous bidder entry. The effect of
competition on bids and revenues can be theoretically ambiguous and is, therefore, itself
an important empirical question. More broadly, a variety identification and testing ap-
proaches in the auction literature exploit exogenous variation the level of competition.3

Once the potential for unobserved auction-level heterogeneity is acknowledged, one natu-
rally suspects that such unobservables will affect bidders’ participation decisions as well.
Thus, for example, high levels of bidder participation may reflect latent auction-level fac-
tors that also alter bidders’ valuations or information structure. In the case of first-price
auctions this means that ignoring unobserved heterogeneity can lead to double trouble:
misspecification of bidders’ first-order conditions and endogeneity of a key covariate.

Some of the errors that will result from ignoring unobserved heterogeneity in auctions
are intuitive. For example, one will infer from bids too much within-auction correlation
in bidders’ private information, and too much cross-auction variation in this information.
Recent work has demonstrated that ignoring unobserved heterogeneity can also lead to
quantitatively important distortions of other less transparent forms, including (a) erro-
neous estimates of market power and information rents to bidders (e.g., Krasnokutskaya
(2011), Krasnokutskaya and Seim (2011), Athey et al. (2011)); (b) incorrect conclusions
about optimal auction design (e.g., Krasnokutskaya (2011), Roberts (2013)); and (c)
wrong conclusions about the presence/significance of the winner’s curse (e.g., Haile et al.
(2003), Compiani et al. (2018)). Thus, as the empirical auctions literature has matured,
it has given increasing attention to strategies allowing identification even in the presence
of unobserved heterogeneity.

Standard methods for handling unobserved heterogeneity in econometrics typically are
not directly applicable in auction settings. For example, nonlinearity rules out reliance
on first differences, and the (typically) small number of bids per auction rules out a fixed
effects approach.4 More fundamental is the fact that the observation-specific components
of the “error terms” in an auction model are equilibrium transformations of bidders’
private information, i.e., of key primitives of interest. Assumptions (e.g., standard IV
conditions) that merely restore independence (or conditional independence) of the error
terms, therefore, generally do not enable identification of the relevant model primitives.
Nonetheless, we will see below that the identification strategies developed for the auction
context have connections to methods developed in other areas of econometrics. Some
of these connections are more direct than others, and in some cases the new insights
discussed here may prove useful in other types of models as well.

2See Guerre et al. (2000) and the extensive literature that follows.
3See, e.g., Gilley and Karels (1981), Athey and Haile (2002), Haile et al. (2003), Guerre et al. (2009),

Gillen (2010), and Campo et al. (2011).
4An exception is the case of certain large multi-unit auctions—e.g., Treasury auctions—where it is

possible to treat each auction in isolation. See, e.g., Cassola et al. (2013) and Hortaçsu et al. (2018).
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Unobserved Heterogeneity in Auctions 3

Because the primary threats of unobserved heterogeneity concern identification, we
focus below exclusively on different approaches to nonparametric identification in the
presence of unobserved heterogeneity. And because unobserved heterogeneity is partic-
ularly challenging in first-price auctions, we focus exclusively on this case. Each of the
approaches we discuss requires assumptions beyond those of a standard baseline model.5

Some rule out correlation between different bidders’ information; some require an aux-
iliary equation and exclusion restriction; some restrict the support of the unobservable;
some restrict the way that unobservables enter the auction model; and some rule out
endogenous bidder entry. As a result, none of these approaches dominates another, and
the most relevant result in practice will depend on the details of the application, the
questions of interest, and the data available. Our goal here is to describe a range of alter-
native strategies currently available, focusing on the key insights permitting identification
without reliance on parametric assumptions.

In the following section we set up an affiliated values auction model with unobserved
heterogeneity and point out the key challenge that arises from the presence of unob-
servables in the equilibrium first-order conditions. Our discussion of solutions to this
challenge then follows the history of the literature, beginning with two broad and well
established ideas. Section 3 discusses a control function strategy, where an auxiliary out-
come (e.g,. the number of bidders entering the auction or the value of the seller’s reserve
price) is exploited to allow one to indirectly condition on the unobservable. Section 4
then discusses identification obtained by adapting results from the literature on mea-
surement error. Here, one starts from a model with independent bidder types so that
observed correlation among bids can be attributed to the unobserved heterogeneity. Bids
can then serve as multiple noisy measures of the unobserved state, allowing application
of classic or modern results. We then move to two ideas developed in very recent work,
both permitting correlated types and common values. Section 5 presents a “quasi-control
function” approach that relaxes the strict monotonicity requirement of the control func-
tion strategy, instead exploiting the way that bounds on the unobservable implied by
endogenous entry outcomes shift with auction-level observables. Finally, in section 6 we
discuss identification obtained using a nonlinear finite mixture model. This approach re-
stricts the unobserved heterogeneity to have finite support but allows a softening of the
index structure required by several other strategies.

2. MODEL

2.1. Setup

Our baseline model is the standard symmetric affiliated values model of first-price sealed
bid auctions (Milgrom and Weber (1982)).6 For simplicity we focus on the case with no
binding reserve price. Bidders in auction t are risk neutral and indexed by i = 1, . . . , Nt.
In addition to the number of bidders Nt, auction t is associated with characteristics

Ct = (Xt, Zt, Ut) .

5We emphasize, however, that we will not attempt to state the most general versions of the results
possible. We focus on a version of each approach meant to convey the main insights most clearly.
6Milgrom and Weber (1982) considered bidding in a single auction, and by using this model we follow

most of the literature in assuming that one observes data from independent auctions. Spatial dependence
is discussed by, e.g., Hendricks et al. (2003) and Compiani et al. (2018). Work on the econometrics of
dynamic auction models includes Jofre-Bonet and Pesendorfer (2003) and Balat (2011).
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Among the three components of Ct are two important distinctions. First, (Xt, Zt) are ob-
servable to econometrician, whereas Ut ∈ R is unobserved. Second, the variables (Xt, Ut)
may affect bidder valuations, but Zt does not—an exclusion restriction we will formalize
below when we discuss results that require it.

The realization of (Nt, Ct) is common knowledge among bidders at auction t. Each
bidder i has valuation for the good for sale given by a random variable Vit ∈ R. However,
beyond (Nt, Ct), each bidder i observes only a private signal Sit ∈ R. Thus, a bidder may
not know her own valuation. A bidder’s expectation of her valuation given her information
set is E [Vit|Sit, Ct, Nt]. More relevant for what follows, however, is a bidder’s expected
valuation conditional on (Sit, Ct, Nt) and an additional assumption that her equilibrium
bid is pivotal (see, e.g., Milgrom and Weber (1982)):

w(s;n, c) ≡ E
[
Vit

∣∣∣∣Sit = max
j 6=i

Sjt = s,Nt = n,Ct = c

]
.

Following Compiani et al. (2018), we refer to w(Sit;Nt, Ct) as bidder i’s “pivotal expected
value” in auction t. We let Vt = (V1t, . . . , Vntt), St = (S1t, . . . , Sntt), and S−it = {Sjt}j 6=i.

The affiliated values model incorporates several important special cases often con-
sidered in applications. By specifying Sit = Vit one obtains a private values model,
and in that case w(Sit;Nt, Ct) = Vit. A further requirement of mutual independence
among (V1t, . . . , Vntt) conditional on Ct will yield the “independent private values” (IPV)
model.7 When E [Vit|St] has nontrivial dependence on S−it, one has a “common values”
model, also known as a model with “interdependent values.” This is a broad class of
models distinguished by the presence of a winner’s curse. A special case, referred to as
“pure common values,” arises when the value of the good is identical for all bidders.

Given Ct = c and Nt = n, let FSV (St, Vt|n, c) denote the joint distribution of bidders’
signals and valuations in auction t. We assume this distribution is affiliated, exchangeable
in the bidder indices i, admits a C1 density that is positive on (s, s)

n × (v, v)
n
, and is

such that the conditional expectation E[Vit|Sit, S−it, Nt, Xt, Ut] exists and is strictly
increasing in Sit.

We assume that observed bids reflect a symmetric Bayes Nash equilibrium in pure,
strictly increasing, differentiable strategies.8 Let

β (·;Nt, Ct) : [s, s]→ R

denote the equilibrium bidding strategy. Bidder i’s equilibrium action (bid) in auction t
can then be represented by the random variable

Bit = β (Sit;Nt, Ct) .

Let Bt = (B1t, . . . , Bntt). Let Mit = maxj 6=iBjt denote the maximum bid among
i’s competitors at the auction. In effect, bidder i competes only against Mit: given

7A relaxation of the IPV model specifies valuations as independent only after conditioning on a latent
variable ωt as well as the common knowledge auction level information Ct. This is a special case of
correlated private values known in the literature as the “conditionally independent private values” model
(see, e.g., Li et al. (2000)). An important distinction between that model and models with unobserved
heterogeneity is that in the latter Ut is observed by bidders, while in the former ωt is unknown to
bidders. These are different models with sometimes very different implications. For example, revenue
equivalence holds under independence conditional on Ct, but not in the conditionally independent private
values model. Thus, distinguishing between these information structures is an important motivation for
exploring models that permit both dependent private information and unobserved heterogeneity.
8See Athey and Haile (2007) for a review of results on existence and uniqueness.
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{Sit = s,Nt = n,Ct = c}, her equilibrium bid solves

max
b
E [(Vit − b) 1 {Mit < b} |Sit = s,Nt = n,Ct = c] . (2.1)

2.2. The Identification Challenge

Our discussion of identification focuses primarily on one primitive of interest: the joint
distribution Fw (·|n, c) of bidders’ pivotal expected values (w(S1t;n, c), . . . , w(Snt;n, c))
given Nt = n,Ct = c. In private values models this is identical to the joint distribution
of valuations conditional on Nt = n,Ct = c. In more general models permitting common
values, identification of Fw (·|n, c) is a form of partial identification that can allow one
to address some important questions.9 Of course, because Ct is not fully observed, one
may also be interested in the distribution of Ut conditional on Xt, Zt, Nt. Thus, we also
discuss identification of this conditional distribution.

From the perspective of the econometrician, we assume that the observables consist
of Nt, Xt, Bt, and in some cases excluded variables Zt. Importantly, Ut is unobserved.
To see why this poses a potential problem for identification, it is useful to review the
pathbreaking insight of Guerre et al. (2000).10 For simplicity, take the case of private
values, where bidder i observes Vit = v,Nt = n,Ct = c. Let

GM |B (m|b, n, c) = Pr (Mit ≤ m|β (Sit;n, c) = b,Nt = n,Ct = c) ,

and let

gM |B (m|b, n, c) =
∂

∂m
GM |B (m|b, n, c) .

Bidder i’s equilibrium bid b must then solve11

max
b̃

(
v − b̃

)
GM |B

(
b̃|b, n, c

)
. (2.2)

This problem has first-order condition

v = b+
GM |B (b|b, n, c)
gM |B (b|b, n, c)

. (2.3)

If there is no unobserved heterogeneity (Ut is degenerate), all terms on the right-hand
side of (2.3) are observable. We then immediately have nonparametric identification of
each bidder’s valuation and, therefore, of the joint distribution FV (V1t, . . . , Vnt|n, c) (Li

9For example, this partial identification allows (a) testing for common values (e.g., Athey and Haile
(2002), Haile et al. (2003), Compiani et al. (2018)); (b) comparisons of expected seller revenues across
standard auction designs (e.g., Shneyerov (2006)); (c) assessment of the effect of competition on bidder
market power (e.g., Compiani et al. (2018)); (d) testing of the hypothesis of equilibrium bidding (e.g.,
Hendricks et al. (2003), Haile et al. (2003), Compiani et al. (2018)); and (e) with additional data on
realized bidder profits, quantification of the winner’s curse (Hendricks et al. (2003)). As discussed by,
e.g., Laffont and Vuong (1996) and Athey and Haile (2007), in a common values model (even without
unobserved heterogeneity) one is typically forced either to settle for such partial identification or to rely
on a combination of additional restrictions and observables beyond bids and auction-level covariates.
Hendricks et al. (2003) and Somaini (2018) offer two such approaches.
10See also Laffont and Vuong (1993), Li et al. (2000, 2002), Athey and Haile (2002), Hendricks et al.
(2003), Haile et al. (2003), Campo et al. (2003), Hortaçsu and McAdams (2010), and Kastl (2011),
among many other papers building on this insight.
11Observe that because equilibrium bids are strictly increasing in signals, conditioning on the value of
a bidder’s equilibrium bid is equivalent to conditioning on his signal. Hence, given the private values
assumption, (2.1) and (2.2) are equivalent.
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6 Haile and Kitamura

et al. (2002)). With unobserved heterogeneity, however, bidders condition on information
unavailable to the econometrician: Ct includes Ut. As a result, the right-hand side of (2.3)
is no longer observed. Indeed, without additional information or structure, the functions
GM |B and gM |B on the right-hand side are not identified.

This challenge extends to the more general affiliated values model, where the first-order
condition takes the form (see, e.g., Haile et al. (2003) or Athey and Haile (2007))

w(sit;nt, ct) = bit +
GM |B (bit|bit, nt, ct)
gM |B (bit|bit, nt, ct)

. (2.4)

Absent unobserved heterogeneity, this equation implies identification of each w(sit;nt, ct)
and, therefore, Fw (·|nt, ct). But when the econometrician is unable to observe all elements
of ct, this strategy breaks down. Additional data or structure will be needed to obtain
identification of our primitives of interest.

2.3. Separability and “Homogenization”

One form of additional structure relied on by several of the approaches discussed below
involves a separability restriction on the way the auction characteristics Ct affect bidder
valuations. Suppose for example that

Vit = Γ (Xt, Ut)V
0
it , (2.5)

where, conditional on Nt,

(V 0
1t, . . . , V

0
Ntt, S1t, . . . , SNtt) |= (Xt, Ut) . (2.6)

Alone, (2.5) has no content; however, when combined with (2.6) it requires that, condi-
tional on Nt, (Xt, Ut) affect the auction only through the multiplicative index Γ(Xt, Ut).
Note that under (2.5) and (2.6) we may take an arbitrary point x0 and let

Γ
(
x0, 0

)
= 1 (2.7)

without loss of generality.
This type of structure proves useful because separability is preserved by equilibrium

bidding. In particular, it is easily confirmed that12

β (Sit;nt, xt, ut) = Γ (xt, ut)β
0 (Sit;nt) , (2.8)

where β0 denotes the symmetric Bayes Nash equilibrium bidding strategy for a stan-
dardized auction t at which Γ (Xt, Ut) = Γ

(
x0, 0

)
= 1. Letting B0

it = β0 (Sit;nt), we can
rewrite (2.8) as

Bit = Γ (xt, ut)B
0
it. (2.9)

Following Haile et al. (2003), we refer to the random variable B0
it as bidder i’s “ho-

mogenized” bid at auction t. Likewise we refer to V 0
it , as i’s “homogenized valuation” and

to w0(Sit;Nt) ≡ w(Sit;Nt)/Γ (Xt, Ut) as i’s “homogenized pivotal expected value.” One
can easily confirm that homogenized pivotal expected values must satisfy the first-order

12See Haile et al. (2003), Athey and Haile (2007), or Krasnokutskaya (2011). We focus here on the case
of multiplicative separability although an analogous result holds by essentially the same argument under
additive separability.

c© Royal Economic Society 2018



Unobserved Heterogeneity in Auctions 7

condition

w0(sit;nt) = b0it +
GM0|B0

(
b0it|b0it, nt

)
gM0|B0 (b0it|b0it, nt)

, (2.10)

where

b0it = bit/Γ(xt, ut)

M0
it = Mit/Γ(xt, ut)

GM0|B0

(
m0|b0, n

)
= Pr

(
M0
it ≤ m|B0

it = b0, Nt = n
)

gM0|B0

(
m0|b0, n

)
=

∂

∂m0
GM0|B0

(
m0|b0, n

)
.

Equations (2.9) and (2.10) imply that, after rescaling bids appropriately, one can proceed
as if the data reflected a sample of homogeneous auctions to recover estimates of the
(homogenized) pivotal expected values w0(sit;nt). Of course, to do so one must first
recover the scaling factors Γ (xt, ut). Observe that knowledge of each w0(sit;nt) and
Γ (xt, ut) will imply identification of Fw (·|n, c).

3. CONTROL FUNCTION APPROACHES

The earliest and simplest approaches to unobserved heterogeneity in first-price auctions
rely on a control function. The essence of the approach is to exploit an auxiliary observable
outcome whose (conditional) variation mirrors that of the unobservable Ut, enabling the
econometrician to indirectly condition on Ut.

13 This approach was first proposed by
Campo et al. (2003) and further developed by Haile et al. (2003), both using the number
of bidders Nt as the auxiliary outcome (see also Guerre et al. (2009)).

Suppose that the number of bidders at each auction t satisfies

Nt = η(Xt, Zt, Ut), (3.11)

where the function η is strictly increasing in its final argument. In addition suppose that
Zt is independent of (St, Vt) conditional on Xt, Ut, Nt. As Campo et al. (2003) point
out, existence of a functional relationship between (Xt, Zt, Ut) and Nt arises naturally
when the meaningful decision to “enter” an auction takes place before a bidder learns
her signal and entry outcomes do not reflect randomization (e.g., mixed strategies). The
monotonicity requirement captures the natural idea that unobservables can be ordered in
a way such that auctions with “better” unobservables attract more bidders. An important
limitation of the strict monotonicity requirement, however, is that this restricts Ut to have
finite support, with cardinality equal to that of Nt|Xt, Zt.

14

The value of strict monotonicity for identification comes from the fact that condi-
tioning on the observables (Xt, Zt, Nt) indirectly fixes Ut. And when combined with the

13This is more than typically required of a control function in a regression setting, where conditioning
on a control variable need only deliver independence between regressors and the structural error in the
outcome equation (e.g., Chesher (2003), Imbens and Newey (2009)). Identification of the auction model
is equivalent to identification of the bidding equation Bit = β(Sit;Nt, Xt, Ut) ((2.4) is the inverse of this
equation), where both Sit and Ut are structural errors. Knowledge of objects like average effects or the
“quantile structural function” generally are not sufficient to address the economic questions of interest
in an auction setting. Olley and Pakes (1996) provide an early example of this kind of approach in a
very different economic setting.
14In section 5 we discuss an approach relaxing the strict monotonicity requirement.
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8 Haile and Kitamura

assumed conditional independence of Zt, this implies that (taking Nt = n) the joint dis-
tribution of bids (B1t, . . . , Bnt) conditional on (Xt, Zt, Nt) is identical to that conditional
on (Xt, Ut, Nt). Thus we can rewrite the first-order condition (2.4) as

w(sit;nt, ct) = bit +
GM |B (bit|bit, nt, xt, zt)
gM |B (bit|bit, nt, xt, zt)

.

Now all terms on the right-hand side are observable, yielding identification of the real-
izations of wit = w(sit;nt, ct) for all i and t, although the value of each ct is not uniquely
determined.

Although this result alone will be sufficient to answer some questions,15 we can obtain
a stronger result by requiring the instrument Zt to provide the missing source of indepen-
dent variation in Xt, Ut, and Nt.

16 Suppose, for example, that Nt is the only endogenous
component of (Nt, Xt, Zt), i.e.,

(Xt, Zt) |= Ut. (3.12)

This immediately yields identification of the function η, implying identification of the
realization of each Ut as well. Since Ut is the only unobservable component of Ct, we now
have identification of each realization w(Sit;n, x, u) given any (n, x, u) in the support of
(Nt, Xt, Ut). This implies identification of the conditional distribution Fw(·|Nt, Xt, Ut) on
this support, as well as the distribution of Ut conditional on any subvector of (Xt, Zt, Nt).
Note that in this case, as long as Zt has nontrivial effect on Nt through (3.11), this
instrument provides an exogenous source of variation in the level of competition. Such
exogenous variation in competition has been exploited by Haile et al. (2003) and Guerre
et al. (2009) to provide an approach for detecting the presence of common values and
to identify a model with risk averse bidders, respectively, while allowing for unobserved
heterogeneity.

An attractive aspect of the control function approach is that it requires no restriction
on functional form or on the information structure of the baseline auction model. This
distinguishes it from all approaches discussed below. But the control function approach
has limitations as well. We have already mentioned the implications of the strictly mono-
tone relation (3.11) for the support of the unobservable. This structure also rules out
“selective entry” by bidders based on the realizations of their private signals (cf. Marmer
et al. (2013), Gentry and Li (2014), Bhattacharya et al. (2014), or Kong (2017a)). A
further limitation is that reliance on a reduced form for bidder entry implies that some
types of counterfactuals (those that would alter the reduced form) will not be identified,
at least without additional work.17

One can avoid these limitations if there is a continuous outcome that can replace the
number of bidders as the auxiliary outcome mirroring variation in Ut. Roberts (2013)
points out that in many applications there is a natural candidate: the seller’s reserve
price.18 If the seller observes the unobserved heterogeneity, it may be natural to assume

15For example, in a private values setting this reveals the division of surplus between seller and buyers.
16Thus far we have not required any variation in Zt. Natural instruments may be measures of the number
of potential bidders (e.g., Haile (2001), Hendricks et al. (2003), Haile et al. (2003)), or of bidder entry
costs (e.g., Kong (2017a), Compiani et al. (2018)).
17Of course, once the auction model primitives are identified using the reduced form entry model, it
may become possible to identify a structural model of entry consistent with the reduced form.
18Adapting bidder first-order conditions to the case of a binding reserve price is straightforward. See,
e.g., Milgrom and Weber (1982), Guerre et al. (2000), and Athey and Haile (2002).
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Unobserved Heterogeneity in Auctions 9

that the reserve price is strictly increasing in Ut conditional on other observables. Fo-
cusing on the case of independent private values, Roberts (2013) shows that, given a
standard regularity condition, this strict monotonicity follows if the seller observes Ut
and sets the profit-maximizing reserve price.19

4. MEASUREMENT ERROR APPROACHES

The control function approach discussed above lets the researcher to pin down, or fix, the
value of Ut through an auxiliary observable. In effect, such a strategy makes the unob-
servable observable. This is not the only possible approach. In fact there is a close parallel
between nonlinear measurement error models and econometric models with unobserved
heterogeneity. Results from the measurement error literature can therefore offer useful
identification strategies for auction models with unobserved heterogeneity. With these
approaches one forgoes pinning down the realization of the unobserved heterogeneity for
each observation and instead relies on a decomposition of observable distributions into
components reflecting model primitives and those reflecting unobserved heterogeneity.

Krasnokutskaya (2011) was the first to apply a measurement error approach to auctions
with unobserved heterogeneity. Building on Li et al. (2000), her result relies on the cele-
brated lemma of Kotlarski (1967).20 Kotlarski’s Lemma is concerned with nonparametric
deconvolution with repeated measurements subject to independent separable measure-
ment error. Consider a triple of mutually independent random variables (Y ∗, η1, η2) and
let

Y1 = Y ∗ + η1

Y2 = Y ∗ + η2.

For normalization purposes let E[η1] = 0. Assuming that the characteristic functions of Y1
and Y2 are non-vanishing,21 Kotlarski (1967) shows that the distribution F (Y ∗, η1, η2) =
F (Y ∗)F (η1)F (η2) is identified from the joint distribution of (Y1, Y2). This result is con-
structive, which can be useful for nonparametric estimation.

Kotlarski’s Lemma has wide applications in econometrics: it applies to measurement
error problems, panel data and, as Krasnokutskaya (2011) shows, auction models with
unobserved heterogeneity. Krasnokutskaya (2011) considers an IPV model in which the
unobserved heterogeneity enters multiplicatively, i.e.,

Vit = UtV
0
it ,

where

Ut |= V 0
1t |= V 0

2t... |= V 0
Ntt.

Here V 0
it can be regarded as i’s homogenized valuation as before.22 By the preservation

of separability under equilibrium bidding, we then have

Bit = UtB
0
it,

19Following Matzkin (2003), Roberts (2013) shows that the assumption of independence between (Xt, Zt)
and Ut may be relaxed under additional restrictions.
20Li et al. (2000) introduced Kotlarski’s Lemma to the auction literature in a closely related model of
conditionally independent private values without common knowledge unobservables.
21Evdokimov and White (2012) provide some results relaxing this assumption.
22Here we implicitly condition on any observable auction characteristics Xt.
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10 Haile and Kitamura

with

Ut |= B0
1t |= B0

2t.

By considering (any) two bidders at auction t, we have

lnB1t = lnUt + lnB0
1t

lnB2t = lnUt + lnB0
2t.

It is then immediate from Kotlarski’s Lemma that the joint distribution of (Ut, B
0
1t, B

0
2t)

is nonparametrically identified from the observable joint distribution of (B1t, B2t). Using
the first-order condition (2.10), one can then recover the marginal distributions of valu-
ations for bidders 1 and 2. In the case of more than 2 bidders, a similar argument yields
the distribution of valuations for other bidders. In the case of symmetric bidders, this
result implies a form of overidentification, allowing falsification of the model.

Note that the data requirement for Krasnokutskaya’s identification results is modest,
and it does not require an instrument. Also, whereas some of the approaches we discuss
require that the unobserved heterogeneity be discrete, here such an assumption is unnec-
essary. And although we have assumed symmetry for simplicity, this is not required. A
critical requirement, however, is the independence of bidder types. In essence, therefore,
this kind of approach is limited to IPV settings.23 A separable structure and statistical
independence between the unobserved heterogeneity and valuations are also critical; it
is this structure that creates the equivalence to the to the classical measurement error
setting.

An alternative approach that is also based on a result from the measurement error
literature has been proposed by Hu et al. (2013). They build upon an identification result
for nonlinear measurement error models due to Hu (2008). Consider a random vector
(Y,W ∗,W,Z), where Y denotes the dependent variable, W ∗ the unobserved independent
variable, W a mismeasured indicator of W ∗ and Z an instrument. Here W ∗ is assumed to
be supported by a finite set, and W and Z are assumed to have the same finite support.
The goal is to identify the joint CDF FY,W∗,W,Z of (Y,W ∗,W,Z). Suppose

Y |= W |= Z|W ∗, (4.13)

which, among other things, allows for nonclassical measurement error. Also assume a full
rank condition for the conditional distribution function of W ∗ given Z, which is essen-
tially an instrument relevance condition. Then with additional conditions that guarantee
uniqueness of the eigenvector-eigenvalue decomposition for an observable matrix, Hu
(2008) shows that FY,W∗,W,Z is identified.

Hu et al. (2013) show that the above result can be used to establish identification
in auction models with unobserved heterogeneity when there are at least three bidders.
Like that of Krasnokutskaya (2011), the identification strategy in Hu et al. (2013) is
essentially limited to the IPV model, although here one can dispense with any separability
requirement. In particular, Hu et al. (2013) assume

V1t |= V2t |= ... |= VNtt|Ut, (4.14)

and that Ut is finitely supported, as in Hu (2008). Pick an arbitrary three bidders (without
loss, the first three of the Nt bidders). The independence above implies

B1t |= B2t |= B3t|Ut. (4.15)

23Common values models with independent types exist, but are not easily motivated in applications.
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Hu et al. (2013) treat B1t, B2t, B3t and Ut, respectively, as the dependent variable
Y , the mismeasured indicator W , the instrument Z, and the true measurement W ∗ in
Hu’s measurement error model described above. To do this, they discretize B2t and B3t.
Moreover, Hu et al. (2013) show that if Vit|Ut is increasing in Ut in terms of first-order
stochastic dominance (FOSD), then the rank condition and the uniqueness conditions
for eigenvector-eigenvalue decomposition in Hu (2008) is satisfied.24 Thus, by the result
above, the joint distribution of (B1t, B2t, B3t, Ut) is identified (up to the discretization).
This in turn allows one to recover the joint distribution of valuations and the unobserved
heterogeneity through the first-order condition (2.4).

There have been at least two important extensions of this result in the recent literature.
Gentry and Li (2014) have showed that it can be used to obtain identification in an IPV
model with endogenous bidder entry under the additional assumption that higher values
of the unobservable lead to higher entry probabilities. They allow for a binding reserve
price and selective entry, the latter being ruled out by the control function and quasi-
control function approaches discussed in sections 3 and 5, respectively. Gentry and Li’s
result does not require an instrument for entry, but can incorporate instruments when a
source of exogenous variation is required. Balat (2011) has shown that one need not rely
on bids to provide the analogs of the “measurements” and instrument in Hu (2008). He
instead exploits the availability multiple measures of participation—that at sequential
stages (prequalification and bidding) or among multiple subgroups (e.g., large firms and
small firms), each of which is assumed to respond (stochastically) to the auction-level
unobservable. When such data are available, a significant advantage of this approach is
that it can allow one to drop the assumption of independent bidder types.

Yet another identification strategy that could be described as a measurement error
approach is due to D’Haultfoeuille and Fevrier (2015).25 This paper first develops a
nonparametric identification result for a model taking the form

Y |= W |= Z|W ∗ (4.16)

where the triple (Y,W,Z) is observable whereas W ∗ is latent. This setting is similar to
(4.13) considered by Hu (2008), although here W ∗ is assumed to be continuously dis-
tributed and a different set of assumptions is imposed. In particular, D’Haultfoeuille and
Fevrier (2015) impose strict monotonicity properties of the boundaries of supp(Y,W,Z)
as functions of W ∗. They show that one can then use the observed values of any two
components of (Y,W,Z) to hold W ∗ fixed, revealing the distribution of the third com-
ponent conditional on W ∗. This yields identification of the conditional distributions of
Y , W and Z given W ∗. Because the unconditional distribution of each component is
directly observed, this implies identification of the distribution of W ∗ as well.

This result naturally applies to measurement error problems, but D’Haultfoeuille and
Fevrier (2015) also discuss its application to auction model. More specifically, consider an
IPV model with valuations with multiplicative unobserved heterogeneity as in Krasnokut-
skaya (2011) and Hu et al. (2013), then under the conditional independence assumption

24This FOSD condition is implied by multiplicative (or additive) separability. Luo (2018) shows that
the FOSD requirement can be weakened.
25Alternatively, we may consider the results by Hu (2008) and D’Haultfoeuille and Fevrier (2015) as
identification strategies for nonparametric mixture models, with W ∗ in (4.13) and (4.16) interpreted
as a mixing variable. We provide further identification results using mixture models in Section 6. The
approach of D’Haultfoeuille and Fevrier (2015) also shares features of the control function approach, in
that strict monotonicity conditions are used to indirectly condition on the unobservable.

c© Royal Economic Society 2018



12 Haile and Kitamura

(4.14), the bids for any three bidders once again satisfy (4.15), which is conformable to
the model (4.16), with unobserved heterogeneity Ut continuously distributed. More im-
portantly, from the form of the equilibrium bidding function D’Haultfoeuille and Fevrier
(2015) note that boundaries of the supports of B1t, B2t, B3t conditional on Ut are all
increasing in it, fulfilling the above boundary monotonicity requirement. Consequently
an application of the general identification result shows that the joint distribution of the
bids and Ut is recovered, allowing identification of the joint distribution of the valuations
and Ut.

26

5. A “QUASI-CONTROL FUNCTION” APPROACH

Compiani et al. (2018) have recently considered an approach that shares many features
of the control function strategy (section 3) while avoiding its strict monotonicity require-
ment and resulting restrictions on the support of Ut. Compiani et al. (2018) consider
an affiliated values model with the separable structure of assumptions (2.5) and (2.6).
They assume, in addition, that the index function Γ (Xt, Ut) scaling bidder valuations is
weakly increasing in Ut.

Without loss, let Ut be uniform on [0, 1]. Like Haile et al. (2003), Compiani et al.
(2018) assume that the number of bidders participating in auction t can be represented
by a reduced-form relation

Nt = η (Xt, Zt, Ut) ,

with

Ut |= (Xt, Zt) (5.17)

and

FSV (St, Vt|Nt, Zt, Xt, Ut) = FSV (St, Vt|Nt, Xt, Ut) .

However, Compiani et al. (2018) require only weak monotonicity of η in Ut. Thus, Com-
piani et al. (2018) assume that unobservables making the good for sale (weakly) more
valuable also lead to (weakly) higher levels of participation.

Compiani et al. (2018) motivate this structure with an example of a fully specified two-
stage game of entry and bidding, where entering the auction involves costly acquisition
of a signal Sit. For that example, they show that the representation of unobservables
with a scalar Ut that is independent of Xt can be obtained as a result rather than an
assumption, as can the weak monotonicity conditions.27 Thus, these requirements may
be less restrictive than they initially appear.

With weak monotonicity of η, the observed values of (Nt, Xt, Zt) do not determine
the realizations of Ut, although they do imply bounds. Compiani et al. (2018) show that
point identification of the model can be obtained by exploiting the way that these bounds
alter the support of equilibrium bids.28

Their argument proceeds in three steps. First consider the bounds on each realized ut.

26D’Haultfoeuille and Fevrier (2015) also consider another application of their results to auction models
with Ut playing the role of an unobserved reserve price.
27As discussed by Compiani et al. (2018), this representation is obtained without loss with respect to
many questions motivating estimation of an auction model. However, separate identification of the effects
of Xt and Ut on the auction could be obtained only under additional restrictions.
28An interesting open question is whether useful partial identification results could be obtained using
these bounds without the index structure relied upon by Compiani et al. (2018). Related ideas have been
explored in other contexts by Manski and Tamer (2002) and Chesher (2005).
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Fix (Xt, Zt) = (x, z) and let the (conditional) support of Nt be

{n (x, z) , n (x, z) + 1, . . . , n (x, z)} .

The function η (x, z, ·) is then characterized by a set of thresholds: Nt = n if and only if
Ut ∈ [τn−1 (x, z) , τn (x, z)]. Observed conditional entry probabilities therefore satisfy

Pr (Nt = n|Xt = x, Zt = z) = τn (x, z)− τn−1 (x, z) n = n (x, z) , . . . , n (x, z) .
(5.18)

Of course, τn(x,z)−1 (x, z) = 0 and τn(x,z) (x, z) = 1, giving an initial value from which
to solve (5.18) for all thresholds τn (x, z). By (5.18), these known thresholds bound the
realization of each Ut; indeed, conditional on (Xt, Zt, Nt) = (x, z, n), Ut is uniform on
[τn−1 (x, z) , τn (x, z)].

Next, to pin down the function Γ, take logs of (2.9) to obtain

lnBit = γ (Xt, Ut) + lnβ0(Sit, Nt), (5.19)

where we have defined γ (Xt, Ut) = ln Γ (Xt, Ut). Now observe that

sup { lnBit|Nt = n,Xt = x, Zt = z} = γ (x, τn (x, z)) + lnβ0 (s̄;n)

while

sup { lnBit|Nt = n,Xt = x̂, Zt = ẑ} = γ (x̂, τn (x̂, ẑ)) + lnβ0 (s̄;n) .

By differencing these equations, one can determine all first differences of the form

γ (x̂, τn (x̂, ẑ))− γ (x, τn (x, z)) .

Additional first differences can be obtained by varying the value of Nt conditioned on,
and differencing first differences with common terms. More first difference are obtained by
applying similar argument using the infimum rather than supremum. Given “enough” of
these first differences, the fact that we know the value of the function γ at one point (recall
(2.7)) will determine γ over its entire domain. Compiani et al. (2018) provide sufficient
conditions—roughly, that Ut and Zt act as continuous substitutes in the “production”
of bidder entry, and that Zt have variation sufficient to offset certain discrete variation
in Ut. They also discuss the partial identification of γ obtained when the instrument
induces more limited variation (even no variation) in bidder entry.

With γ known, identification of Fw (·|n, c) follows easily. Fix Xt = x,Nt = n and
recall (5.19). The random variable γ (x, Ut) is independent of

(
lnB0

1t, . . . , lnB
0
nt

)
and has

(now) a known distribution. Thus, because the joint distribution of (lnB1t, . . . , lnBnt) is
observed, a standard deconvolution result implies identification of the joint distribution
of the log homogenized bids

(
lnB0

1t, . . . , lnB
0
nt

)
. Since homogenized pivotal expected

values must satisfy the first-order condition (2.10), their joint distribution is identified.
Because we know the function γ, this also implies identification of the joint distribution
Fw (·|n, c) for all n and c.

The approach of Compiani et al. (2018) shares with the control function approach of
Haile et al. (2003) the potential disadvantage of relying on a reduced form for bidder
entry outcomes. And like the strategy of Krasnokutskaya (2011) (and the finite mixture
approach discussed in section 6), it relies on a separability requirement limiting the way
auction characteristics alter the environment. On the other hand, the approach deals
explicitly with the endogeneity of bidder entry, requires no further restriction on the
baseline auction model, and provides a strategy for isolating the exogenous variation in
competition induced by the instrument.
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6. A MIXTURE MODEL APPROACH

Mixtures have been widely used in order to incorporate unobserved heterogeneity in
econometric models.29 Nonparametric identifiability of mixture models is a challenging
subject, although some approaches have been suggested in the literature. For example,
measurement error models considered by Hu (2008) and D’Haultfoeuille and Fevrier
(2015) can be interpreted as mixture models, and as seen in Section 4, identification
results in these models are potentially useful for auctions with unobserved heterogeneity,
especially in the IPV model. Moreover, a recent paper by Kitamura and Laage (2017)
provides sufficient conditions for identification of a finite mixture regression model. We
demonstrate below that their result can be used to establish nonparametric identification
of the affiliated values model while treating unobserved heterogeneity flexibly.

Kitamura and Laage (2017) consider a J-components mixture of nonparametric re-
gressions

Y = γ(X,U) + εU , Pr{U = u} = λu, u = 1, ..., J, (6.20)

where the econometrician observes the outcome variable Y and the covariate X, whereas
U and εU are unobserved. The functions {γ(·, u)}Ju=1, the probability weights {λu(·)}Ju=1,
and the distributions of {εu}Ju=1 are unknown. The key assumptions for the identification
results in Kitamura and Laage (2017) are: (i) εu |= X for every u ∈ {1, ..., J} and (ii)
there exists a segment where γ(x, u), u ∈ {1, ..., J} are non-parallel. With regularity
conditions in terms of the characteristic functions and/or moment generating functions
of εu, u ∈ {1, ..., J}, Kitamura and Laage (2017) show that {γ(·, u)}Ju=1, {λu}Ju=1 and
the distribution functions Fεu , u = 1, ..., J are all nonparametrically identified.

To apply this result to an auction model with unobserved heterogeneity, the multiplica-
tive structure (2.5) is once again maintained, although this time we impose the following
independence condition:

(V 0
1t, . . . , V

0
Ntt, S1t, . . . , SNtt) |= Xt|Nt, Ut. (6.21)

This assumption relaxes condition (2.6) by avoiding the requirement of independence
between homogenized valuations/signals and Ut. Thus, for example, bidders’ private
information may interact with the unobservable, not just through an index of auction
characteristics (Xt, Ut). These structures imply

w (Sit;Nt, Xt, Ut) = Γ(Xt, Ut)w
0 (Sit;Nt, Ut) , (6.22)

where w0 (s;n, u) = E[V 0
it |Sit = maxj 6=i Sjt = s,Nt = n,Ut = u]. As before, w0 (s;n, u)

is a homogenized pivotal expected value, although here it is allowed to depend on Ut. On
the other hand, we assume that the support of Ut is {1, ..., J}, so that the finite mixture
identification result in Kitamura and Laage (2017) applies.

Like the quasi-control function approach in Section 5 and the measurement error ap-
proach by Krasnokutskaya (2011), the mixture approach in this section imposes the
multiplicative separability requirement. But note that it differs from the other two in
that the separability is required only in terms of Xt, not Ut. The mixture approach, like
Hu et al. (2013), also assumes a discrete and finite support for unobserved heterogeneity.
On the other hand, it applies to general affiliated values models, as the control function
and quasi-control function approaches do.

29See Compiani and Kitamura (2016) for a recent review.
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By the separability-preserving property of equilibrium bidding, from (6.22) we obtain

Bit = Γ(Xt, Ut)B
0,Ut

it ,

where B0,Ut

it is bidder i’s homogenized valuation (i.e., B0,Ut

it = β0(Sit;Nt, Ut)). Here the

more flexible index structure is also inherited by equilibrium bids: B0,Ut

it can depend
on Ut even after homogenization. Taking logs of both sides and letting bit = logBit,
γ(Xt, Ut) = log Γ(Xt, Ut), and b0,Ut

it = logB0,Ut

it , we have

bit = γ(Xt, Ut) + b0,Ut

it .

Note that our independence assumptions imply

(b0,u1t , . . . , b
0,u
nt ) |= Xt|Nt.

Finally, we assume

Ut |= Xt|Nt. (6.23)

Note that this imposes independence of Xt from the unobserved heterogeneity. Thus, for
example, this generally rules out entry outcomes Nt that depend on both Xt and Ut. Of
course, if we introduce additional covariates (that can be correlated with Ut) and if the
independence condition between Xt and Ut conditional on the extra covariates and the
non-parallel condition with respect to Xt hold, then identification prevails once again.30

In any event, we are now in a position to apply the identification result of Kitamura
and Laage (2017). For the remainder of this section we fix Nt at an arbitrary value n
and suppress the index n except where it is necessary. Take any vector c = (c1, ..., cn)′

from Rn and construct the linear combination of log bids

n∑
i=1

cibit =

(
n∑
i=1

ci

)
γ(Xt, Ut) +

n∑
i=1

cib
0,Ut

it .

Rewrite this as

b̃ct = Cγ(Xt, Ut) + b̃c,0,Ut

t , (6.24)

with b̃ct ≡
∑n
i=1 cibit, C ≡

∑n
i=1 ci and b̃c,0,Ut

t ≡
∑n
i=1 cib

0,Ut

it . Note that

b̃c,0,ut |= Xt (6.25)

holds for each u ∈ {1, ..., J}. Define

λu = Pr{Ut = u}, u ∈ {1, ..., J}. (6.26)

Applying the result by Kitamura and Laage (2017) outlined above to (6.24), (6.25), and
(6.26), we see that Cγ(·, u), λu, and the distribution of b̃c,0,ut are all identified for every c ∈
Rn and each u ∈ {1, ..., J}. But C is known, so γ(·, ·) is identified. As c ∈ Rn is arbitrary,
the (marginal) distribution of every linear combination b̃c,0,ut of (lnB0,u

1t , ..., lnB
0,u
1n ) is

identified. Thus, by the Cramér-Wold device, the joint distribution of (B0,u
1t , ..., B

0,u
nt )

is identified. Since γ(·, ·) is already known, this implies the identification of the joint
distribution of (B1t, ..., Bnt)|Nt = n,Xt = x, Ut = u. From the first order condition for
equilibrium bidding the joint distribution of (w(S1t;n, x, u), ..., w(Snt, ;n, x, u)) is then
uniquely determined.

30Moreover, Kitamura and Laage (2017) show that nonparametric identification can be obtained in the
model (6.20) even without the independence restriction (6.23), at least for the case J = 2.

c© Royal Economic Society 2018



16 Haile and Kitamura

7. CONCLUSION

We have discussed several strategies for allowing unobserved heterogeneity in empirical
models of first-price auctions without sacrificing nonparametric identifiability. Some of
these methods are now well established in the empirical literature, while others have been
developed only very recently. In all cases, some combination of new structure or new data
must be added to the minimal setting in which one observes only bids and covariates,
and where no structure is placed on the model beyond those needed to characterize
equilibrium behavior. The results we have discussed offer a range of alternatives, all of
which build on insights developed for other types of econometric models.

Each of the identification strategies we have discussed offers advantages and disad-
vantages relative to others. And, while we have focused exclusively on identification,
nonparametric/semiparametric estimators based on these identification results introduce
additional trade-offs, suggesting that the most suitable approach in practice will vary with
the application. We view these nonparametric identification results as relevant for em-
pirical work employing parametric models as well. Even when practical concerns dictate
the use of parametric assumptions for estimation, it is valuable to understand whether
such assumptions are essential maintained hypotheses or merely choices of finite sam-
ple approximation method; without such an understanding, we cannot be precise about
the foundation on which we build knowledge from data. Here, the availability of sev-
eral alternative sufficient conditions for nonparametric identification suggest a form of
robust identification that should encourage the use of models incorporating unobserved
heterogeneity in practice. Indeed, applications using estimators based these identification
strategies so far indicate that accounting for unobserved heterogeneity can be important
for the policy conclusions one reaches.31
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Cassola, N., A. Hortaçsu, and J. Kastl (2013). The 2007 subprime market crisis through
the lens of european central bank auctions for shortterm funds. Econometrica 81,
1309–1345.

Chesher, A. (2003). Identification in nonseparable models. Econometrica 71, 1405–1441.
Chesher, A. (2005). Nonparametric identification under discrete variation. Economet-

rica 73, 1525–1550.
Compiani, G., P. Haile, and M. Sant’Anna (2018). Common values, unobserverd hetero-

geneity, and endogenous entry in u.s. offshore oil lease auctions. Technical report, Yale
University, Cowles Foundation CFDP No. 2137.

Compiani, G. and Y. Kitamura (2016). Using mixtures in econometric models: a brief
review and some new results. The Econometrics Journal 19 (3), C95–C127.

D’Haultfoeuille, X. and P. Fevrier (2015). Identification of mixture models using support
variation. Journal of Econometrics 189, 70–82.

Evdokimov, K. and H. White (2012). Some extensions of a lemma of kotlarski. Econo-
metric Theory 28 (4), 925–932.

Gentry, M. and T. Li (2014). Identification in auctions with selective entry. Economet-
rica 82, 314–344.

Gillen, B. (2010). Identification and estimation of level-k auctions. Technical report,
Caltech.

Gilley, O. W. and G. V. Karels (1981). The competitive effect in bonus bidding: new
evidence. Bell Journal of Economics 12, 637–648.

Guerre, E., I. M. Perrigne, and Q. Vuong (2000). Optimal nonparametric estimation of
first-price auctions. Econometrica 68, 525–574.

Guerre, E., I. M. Perrigne, and Q. Vuong (2009). Nonparametic identification of risk
aversion in first-price auctions under exclusion restrictions. Econometrica 77, 1193–
1227.

c© Royal Economic Society 2018



18 Haile and Kitamura

Haile, P. A. (2001). Auctions with resale markets: an application to u.s. forest service
timber sales. American Economic Review 91, 399–427.

Haile, P. A., H. Hong, and M. Shum (2003). Nonparametric tests for common values in
first-price sealed-bid auctions. Cowles Foundation Discussion Paper 1444.

Hendricks, K. and H. J. Paarsch (1995). A survey of recent empirical work concerning
auctions. Canadian Journal of Economics 28, 403–426.

Hendricks, K., J. Pinkse, and R. H. Porter (2003). Empirical implications of equilib-
rium bidding in first-price, symmetric, common value auctions. Review of Economic
Studies 70, 115–145.

Hendricks, K. and R. H. Porter (2007). An empirical perspective on auctions. In M. Arm-
strong and R. Porter (Eds.), Handbook of Industrial Organization, Volume 3, pp. 2073–
2143. Elsevier.

Hickman, B. R., T. P. Hubbard, and Y. Saglam (2012). Stuctural econometric methods
in auctions: A guide to the literature. Journal of Econometric Methods 1, 67–106.
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