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Summary This paper is concerned with applications of mixture models in econometrics.
Focused attention is given to semiparametric and nonparametric models that incorporate
mixture distributions, where important issues about model specifications arise. For example,
there is a significant difference between a finite mixture and a continuous mixture in terms of
model identifiability. Likewise, the dimension of the latent mixing variables is a critical issue,
in particular when a continuous mixture is used. We present applications of mixture models
to address various problems in econometrics, such as unobserved heterogeneity and multiple
equilibria. New nonparametric identification results are developed for finite mixture models
with testable exclusion restrictions without relying on an identification-at-infinity assumption
on covariates. The results apply to mixtures with both continuous and discrete covariates,
delivering point identification under weak conditions.

Keywords: Continuous mixture models, Finite mixture models, Multiple equilibria,
Nonparametric identification, Unobserved heterogeneity.

1. INTRODUCTION

Mixture models are widely used in economic applications. First of all, mixtures are commonly
employed as a modelling device to account for unobserved heterogeneity, with applications
ranging from the labour to the industrial organization literature; references include Berry et al.
(2006), Keane and Wolpin (1997) and Cameron and Heckman (1998). Mixtures also arise when
the unobserved element that varies across individuals is the form of their utility functions, as
in random utility models (RUMs). Another application in microeconometrics is the treatment
of multiple equilibria in discrete games; see, e.g. Cooper (2002), Berry and Tamer (2006) and
Ciliberto and Tamer (2009). Measurement error models can be reformulated in terms of mixtures,
as in Horowitz and Manski (1995), Manski (2003), Chen et al. (2011) and Schennach (2013).
Related applied papers include Hu et al. (2013), Bonhomme and Robin (2014) and Arellano et al.
(2014). Heckman and Singer (1984a, b) and Abbring and van den Berg (2003) apply mixtures
to the analysis of duration models. Finite mixtures have also been employed in regime switching
models; see, e.g. Cho and White (2007). The above is an incomplete list of the many applied
settings in which mixture models arise. Some of these applications are analysed in subsequent
sections in greater detail.
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The tremendous importance of mixtures in economics, as well as other fields, has motivated
a large body of theoretical research, in both the statistics and the econometrics literature.
Given the vastness of this research area, a comprehensive account is far beyond the scope
of this paper. Instead, we focus on certain recent advances concerning semiparametric and
nonparametric treatments of mixtures. These developments increase the flexibility of the models
and reduce their reliance on restrictive parametric assumptions. This is important because
consistency of estimators for the parameter of interest usually hinges on the correct specification
of the unobserved heterogeneity distribution. Cases where this issue is highly relevant include
proportional hazard models, as in Heckman and Singer (1984b), discrete choice models, as in,
e.g. Matzkin (1992), and switching regression models, as in, e.g. Kitamura (2003).

The greater flexibility allowed by the semiparametric and nonparametric approaches
often comes at the cost of reduced identifying power. In other words, relaxing the traditional
parametric assumptions often does not allow the researcher to uniquely identify the parameters
of interest and only partial identification results can be obtained. A variety of examples in the
paper illustrate this trade-off.

We now lay out the general model that is used throughout the paper. Consider the following:

F (y) =
∫
F (y|α) dG(α). (1.1)

In (1.1), F is a cumulative distribution function (CDF) of an observed random variable Y ,
F (·|α)α∈A is a collection of CDFs indexed by a random variable α ∈ A, where A is a (possibly
infinite) set, and G is a CDF on the space A. Throughout the paper, we employ the following
terminology. The CDF F is referred to as the mixture distribution, the CDFs F (·|α)α∈A are
called the component distributions, G is the mixing distribution and α is the unobserved latent
(or mixing) variable. In words, (1.1) says that the distribution F is a mixture with components
F (·|α)α∈A and mixing distribution G. In the case where α takes on a finite number of values,
the probability mass attached by the distribution G to each αi is often called the weight of
component i.

In a typical setting, the econometrician observes repeated draws (yi)ni=1 from the mixture
distribution F and wishes to estimate the unknown parameters on the right-hand side of (1.1),
namely the component distributions and the mixing distribution.

The basic framework of (1.1) can be specialized and extended in several directions. First,
the latent variable α can take a finite number of values or an infinite (typically uncountable)
number of values. The case of a finite mixture is dealt with in Section 2, while general mixtures
are addressed in Section 3. Second, the econometrician needs to choose whether to specify
a parametric form for the component distributions or to pursue a nonparametric approach. A
similar decision applies to the mixing distribution. Third, the dimension of the latent variable α
can play an important role, particularly in the case of mixtures with infinitely many components.
Finally, one may want to introduce covariates in the basic model of (1.1). As discussed in
the following sections, the assumptions about the way in which the component distributions
and/or the mixing distribution depend on the covariates are key to obtaining identification of the
parameters of interest.

This paper is organized as follows. In Section 2, we discuss finite mixtures and present some
new identification results. In Section 3, we deal with possibly infinite mixtures; in particular,
panel data models, random coefficient models and random utility models are considered. We
conclude in Section 4. All proofs are given in the Appendix.
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2. FINITE MIXTURES

Finite mixtures have been analysed extensively in the statistical literature. An exhaustive
account of the statistical literature on mixtures (including infinite mixtures) is provided by
Lindsay (1988). Chapter 8 of Prakasa Rao (1983) provides excellent discussions of identifiability
of mixtures, including finite mixtures. See also McLachlan and Peel (2000) and Frühwirth-
Schnatter (2006).

Most of the literature has taken a parametric approach to finite mixture models, which means
that the component distributions are assumed to be known up to finite-dimensional parameters.
Under such assumptions, identification of the parameters of interest is usually straightforward.
However, these identification results are fully driven by the chosen functional form and model
misspecification generally leads to inconsistent estimates and invalid inference. Therefore, a
growing body of research, both in statistics and in econometrics, investigates how semiparametric
and nonparametric methods can be applied to mixture models. In what follows, we consider
some of these recent developments. Identification strategies under four different scenarios are
discussed: multiple outcomes with independence properties are observed; covariates enter the
mixing weights; covariates enter the component distributions; covariates enter both the mixing
weights and the component CDFs. For the fourth case, new identification results are presented.

2.1. Multiple outcomes with independence property

An important contribution to the nonparametric analysis of mixtures in the statistical literature
is provided by Hall and Zhou (2003). They consider two-component mixtures with an
independence property. The model takes the form

F (y) = λ

k∏
j=1

Fj1(yj ) + (1 − λ)
k∏
j=1

Fj2(yj ), (2.1)

where y = (y1, . . . , yk)′ and the CDF of each component factorizes by the independence
assumption. The motivation for considering this model comes from the clinical trial literature.
In particular, one can think of y as a vector of outcomes for k clinical tests, whose distribution
is allowed to vary depending on whether a patient is affected by a given disease or not. The
researcher observes y, but does not observe the patient’s disease status nor the proportion of
people affected. Therefore, the problem is to nonparametrically identify and estimate the CDFs
Fji , for j = 1, . . . , k and i = 1, 2, and the mixture weight λ based on random draws from F .
Clearly, if k = 1, identification is a hopeless task. For the case k = 2, Hall and Zhou (2003)
show that the parameters of interest are not identified. In particular, given the estimable CDF F ,
(2.1) has a continuum of solutions indexed by two scalar parameters. However, when k = 3, the
authors show that identification (up to switching of the two products on the right-hand side of
(2.1)) is achieved under an irreducibility condition on the density f of the CDF F .1

The proof exploits the fact that every lower-dimensional submodel derived from (2.1)
imposes a different restriction on the parameters of interest. The total number of restrictions
is 2k − 1 while the number of parameters is 2k + 1. Note that for k = 3, these two numbers

1 The density f is said to be irreducible if none of its bivariate marginal densities factorizes into the product of the two
corresponding univariate marginals.
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coincide. Therefore, when k < 3 the model is not identified, when k = 3 we have just-
identification and when k > 3 there are over-identifying restrictions.

Given identification (i.e. for k = 3), Hall and Zhou (2003) propose a fully nonparametric
estimator for the component distributions and the mixing weight. The estimator is obtained by
minimizing an integrated distance between an estimator of F , which does not take into account
the structure of the model as specified in (2.1), and an expression (involving the unknowns
with respect to which the minimization is carried out), which is instead based on (2.1). This
estimation procedure is close in spirit to nonparametric maximum likelihood (ML) and empirical
likelihood; see Laird (1978), Qin (1998), Qin (1999) and Zou et al. (2002) for details about how
these frameworks can be applied to mixture models. The estimators proposed by Hall and Zhou
(2003) for the component distributions and the mixing weight are strongly, uniformly consistent.
Moreover, under regularity conditions, the estimator for λ achieves the root-n rate of convergence
and the estimators for the components are root-n consistent in L2.2

An attractive feature of the above results is that they rely on relatively mild regularity
conditions and only require the number of observations for each individual in the sample to
be larger than or equal to 3. In particular, this means that the results can be applied to settings in
which only a few observations per individual unit are available, as in the case of a short panel.

The work by Hall and Zhou (2003) has been extended and complemented by several papers in
both the statistics and the econometrics literature. Among the latest developments, Bonhomme
et al. (2016b) provide sufficient conditions for nonparametric identification of the component
distributions, the mixing weights and the number of components.3 The conditions impose some
restrictions on the component densities, namely absolute continuity, square integrability and lack
of multicollinearity among the Fourier coefficients of an expansion of the component densities.
The identification proof is quite different from that of Hall and Zhou (2003), which allows
Bonhomme, Jochmans and Robin to obtain two novel results. First, they provide a consistent
estimator for the number of mixture components. Second, their approach is more flexible as it
allows for an arbitrary number of mixtures, while Hall and Zhou (2003) only deal with the two-
component case. Finally, the estimators proposed by Bonhomme, Jochmans and Robin appear to
be computationally less costly than the nonparametric ML estimators of Hall and Zhou (2003).

Further, Allman et al. (2009) show that Hall and Zhou (2003) can be viewed as a special
case of a more general model in which identification comes from applying an algebraic result on
three-way arrays by Kruskal (1977). This theorem can be used to show identification of a broad
class of models, including discrete hidden Markov models and random graph models. However,
the proof is typically not constructive and thus does not directly lead to an estimation procedure.
This issue is explored by Bonhomme et al. (2016a), who suggest an estimator based on the joint
approximate diagonalization of matrices.

Another relevant extension encompassing a variety of economic applications can be found in
Kasahara and Shimotsu (2009). The focus is on dynamic discrete choice models with unobserved
heterogeneity, where mixtures represent the different (latent) types that the agents belong to.
Instead of the independence condition in (2.1), they consider Markovian structures. Moreover,
following the identification strategy based on covariates in Kitamura (2003), they change the
model structure in (2.1) by introducing covariates, and they employ techniques akin to those

2 A sufficient condition for root-n convergence is that the component distributions be compactly supported. This
condition can be relaxed by imposing constraints on the tail behaviour of the component distributions.

3 As in Hall and Zhou (2003), the dimension of the outcome variable is assumed to be at least 3.
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used by Hall and Zhou (2003).4 Indeed, the main source of identifying power in this setting
is exactly the fact that the outcome variable responds differently to changes in the covariates
for different types. In other words, identification requires the covariates to affect the conditional
choice probabilities of the agent in a sufficiently heterogeneous way across types. Importantly,
the presence of covariates makes identification possible even with relatively short panels, which
is the type of data set that is often available in applications.

The paper also provides sufficient conditions for the nonparametric identification of the
number of components, i.e. the number of types in the dynamic discrete choice setting.
Interestingly, the number of types can be nonparametrically identified even with just two-period
panels. The proof relies on rank assumptions requiring the change in the covariates to have
a sufficiently strong effect on the conditional choice probabilities. However, such conditions
(which are also needed for identification of the other parameters of interest) cannot be tested
using the data. A computationally attractive procedure for estimation of dynamic discrete models
with unobserved heterogeneity is proposed by Kasahara and Shimotsu (2011).

2.2. Covariates in the mixing weights

As discussed above, the model is in general not identified if the outcome is less than three-
dimensional. One way to improve on this negative result is to assume the data have covariates
that satisfy certain exclusion restrictions. Moreover, even if point identification is not obtained,
it may still be interesting to characterize the identified set. This is the approach taken by Henry
et al. (2014), who consider the following model

F (y|x,w) =
J∑
j=1

λj (x,w)Fj (y|x), (2.2)

where y is now scalar-valued. The paper shows that this model is only partially identified when
the outcome is not required to be at least three-dimensional. However, the characterization of the
identified set is constructive and can be used to extract useful information from the data, such as
the nonparametric identification of the number of mixture components.

The main assumption on which the model relies is embedded in (2.2) and takes the form of
an excluded covariate restriction. The assumption states that the covariate W affects the mixing
weights, but does not change the component distributions. The entire analysis is conditional
on values of X for which the excluded covariate assumption holds. As no other property is
imposed on X, conditioning on this variable will be left implicit throughout. In accordance with
instrumental variable models, it is also required that the dependence of the mixing weights on
the covariate W be strong enough.

The exclusion restriction on W can be justified in a number of applications. First, consider
Markov switching models; see, e.g. Cosslett and Lee (1985) and Hamilton (1989). Assume that
the outcome variable Y is an mth-order autoregression conditionally on the value of a state
variable that follows a Markov chain. The hidden Markov chain determines the distribution of the
outcome variable; for instance, it could determine the expectation (as in mean switching models)
or the variance (as in stochastic volatility models). This type of model can be expressed in the
form of (2.2) by settingX = (Yt−1, . . . , Yt−m) andW can be chosen from Y whose lag orders are

4 We discuss details of this identification approach in Section 2.3.
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m+ 1 or higher, e.g.W = Yt−m−1 orW = (Yt−m−1, . . . , Y1). Then, each component distribution
would not depend on W . Moreover, in general, the distribution of the unobserved state S will
depend on lagged values of the outcome, i.e. λj (x,w) = P (St = j |X = x,W = w) will depend
on w, which corresponds to the relevance condition for instrumental variables.

Another example where the model (2.2) is relevant is the misclassification problem. In this
set-up, the researcher observes an outcome variable Y and potentially flawed measurements T of
an underlying categorical regressor T ∗. The case of a discrete mismeasured regressor (often
referred to as misclassification) is especially relevant, given that in this setting the classical
assumption of independence between measurement error and true value is untenable. This
implies that traditional methods based on deconvolution cannot be applied.

A common assumption in the misclassification literature is that, conditional on the true
value of the regressor T ∗, the outcome Y and the observed regressor T are independent. This
assumption is sometimes referred to as nondifferential measurement error. Under this restriction,
we can write

Fy|T (Y |T ) =
J∑
j=1

FY |T ,T ∗ (y|T , T ∗ = tj )P {T ∗ = tj |T }

=
J∑
j=1

FY |T ∗ (y|T ∗ = tj )P {T ∗ = tj |T }. (2.3)

This equation shows that misclassification models can be written in the form of model (2.2) by
setting the excluded variableW equal to the observed regressor T and λj = P {T ∗ = tj |T }. Here,
the role of the latent variable giving rise to the mixture is played by the unobserved correctly-
classified regressor T ∗.

The nondifferential measurement error assumption is not innocuous. See, for example,
Section 2.5 of Carroll et al. (2006) and Bound et al. (2001) for possible causes of differential
measurement error. Further references in the misclassification literature include Mahajan (2006),
Molinari (2008), Chen et al. (2011) and Hausman (2001).

A third setting where model (2.2) can be applied is microeconometric models with
unobserved heterogeneity. For example, if the outcome variable is demand for a good, the
researcher may be interested in allowing both for observed heterogeneity across buyers (given by
the covariates for which data are available) and for unobserved heterogeneity (given by a finite
number of types and, possibly, an idiosyncratic shock). In this case, the excluded instrument
W could be a set of geographical variables that do not enter preferences or covariates – and
thus do not affect demand for a given type – but do change the distribution of buyer types.
Another example is an oligopoly model, where the outcome variable is again demand, the
observed covariates are prices and (possibly mismeasured) costs, and the excluded instrument
is (possibly mismeasured) profits. As long as profits do not belong to the buyer’s information set,
they do not affect demand given the covariates and the buyer type. Further, if profits do have an
influence on the composition of demand, then the instrument relevance condition is satisfied as
well. Additional details on this model can be found in Henry et al. (2014).

Finally, (2.2) can be used to account for multiple equilibria in economic models. In this
context, each element of the mixture represents a different equilibrium and the mixing weights
correspond to the probability distribution over equilibria given by some selection mechanism.
The restrictions on the instrument require W not to affect the distribution of the outcome
variable in any given equilibrium, but to have an impact on the equilibrium selection mechanism.

C© 2016 Royal Economic Society.
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Policy interventions are often argued to satisfy these conditions. For instance, in the analysis of
the airline market by Ciliberto and Tamer (2009), one may claim that anti-collusion policies
do not affect a firm’s entry decision on a given market, but do influence the equilibrium
selection differentially across regional markets. See Lewbel and Tang (2015) for nonparametric
identification results in an incomplete information game theoretic model that implies a closely
related restriction. Henry et al. (2014) provide further examples of excluded instruments used in
the development, macroeconomics and international finance literatures.

The previous paragraphs listed some of the applications in which the exclusion restriction on
W may be plausibly justified. We now discuss the results that Henry et al. (2014) obtain based
on model (2.2). The exclusion and relevance restrictions are in general not sufficient to obtain
nonparametric point identification of the mixing weights and component distributions.5 Henry
et al. (2014) show that the parameters of interest can be expressed as functions of J (J − 1)
scalar parameters, where J is the number of components and is, for now, assumed to be
known. The identified set then is given by all the values in RJ (J−1), which imply values of
the mixing weights and of the component distributions that satisfy obvious restrictions. In
particular, the implied mixing weights must be between 0 and 1 and the implied component
CDFs must be nondecreasing, right-continuous and have the correct limits as their argument
goes to ±∞. Moreover, the characterization of the identified set for the case of two-component
mixtures provides insight into the role played by variation in the outcome and the instrument.
Intuitively, the identified set shrinks as variation in the outcome conditional on the instrument
increases and as the effect of the instrument on the distribution of the outcome becomes
stronger.

While the model is in general not identified, it is possible to achieve point identification of
certain quantities of interest. In the case of two-component mixtures, it is shown that any linear
functional of F1(y|x) − F0(y|x) is identified up to scale. This implies, for example, that the ratio

P1{y > a|x} − P0{y > a|x}
E1[y|x] − E0[y|x]

is point identified for all values of a, provided the denominator is nonzero.6 In the context
of randomized experiments with misclassified treatment, this quantity can be interpreted as a
quantile treatment effect relative to the (nonzero) average treatment effect.

The results obtained by Henry et al. (2014) can be applied to a variety of situations as model
(2.2) imposes relatively weak restrictions. In particular, both the outcome Y and the covariates
X can be discrete or continuous. This is in contrast with other studies, where more structure is
imposed on the model. For example, in the misclassification literature, Molinari (2008) assumes
that the outcome takes a finite number of values, and Bollinger (2006) restricts attention to
mismeasured binary regressors to derive bounds on E[Y |X]. Moreover, no constraints are put
on the mixing weights, whereas Horowitz and Manski (1995) model contaminated data as
a two-component mixture and impose an upper bound on the probability of contamination.
Note that the results in Henry et al. (2014) rely on testable assumptions. In particular, for
the J = 2 case, the identified set is defined in terms of estimable bounds. These identified
quantities can be used to perform a specification test for the model. More precisely, the
researcher can jointly test the exclusion restriction and the assumption that the mixture has

5 Recall that in this section we do not impose any restrictions on the dimensionality of the outcome; in particular, it is
allowed to be one- or two-dimensional, in contrast to Section 2.1.

6 Here, Pi and Ei denote probability and expectation under Fi , respectively.
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two components. The same idea can be used to determine the number of components, to
which end Henry et al. (2014) propose a simple iterative procedure. The discussion above is
concerned with partial identification. The reader is referred to Henry et al. (2013) for the use
of additional restrictions on relative tail behaviour of component distributions to achieve point
identification and nonparametric estimation under such restrictions. In a recent paper, Hohmann
and Holzmann (2013) discuss related results, and in particular, show that the Hall–Zhou model
in Section 2.1 can be studied within the framework of the Henry–Kitamura–Salanié model in this
section.

2.3. Covariates in the component distributions

Section 2.2 focused on the case where identification stems from the fact that there is a random
variable affecting the mixing weights, which is excluded from the component distributions.
Now we consider the opposite set-up, along the lines of Kitamura (2003). The key identifying
assumptions will concern the way in which the component distributions depend on covariates,
whereas the mixing weights will be assumed to be independent of covariates. The model is
given by

F (y|x) =
J∑
j=1

λjF
j
ε (y −mj (x)), (2.4)

where F jε , j = 1, . . . , J are the CDFs of

εj = y −mj (x)

for j = 1, . . . , J . We can interpret model (2.4) as a switching regression model, as follows

y = mj (x) + εj , εj ∼ F jε , with probability λj . (2.5)

Models of the form (2.5) have traditionally been tackled in a parametric framework.
Identification is achieved by assuming specific functional forms for the mj functions and the
conditional error distributions. Once the problem is reduced to a finite dimension, estimation
can usually be carried out via ML. However, such parametric assumptions are very strong and,
if incorrect, may lead to inconsistent ML estimates. This is in contrast with standard regression
models (i.e. without switching) for which the researcher can estimate the regression function
nonparametrically without making functional form assumptions or choosing a distributional
form for the error. The risk of misspecification inherent in the parametric approach motivates
the investigation of the nonparametric identification of model (2.5), as carried out in Kitamura
(2003).

First, it is obvious that the standard conditional mean restriction on the errors is not sufficient
to achieve identification. This is because mean independence allows multiple – in fact, infinitely
many – ways to split the mixture distribution into distinct components. Thus, a stronger condition
is required for point identification. Statistical independence between the errors and the covariates
X turns out to be enough. This condition can be interpreted as a ‘shift restriction’, in the sense
that the entire distribution of the εj needs to remain invariant with respect to covariate values. In
addition, identification of the regression functions mj requires these functions not to be parallel
in some neighbourhood. Regularity conditions are also imposed on the tail behaviour of the

C© 2016 Royal Economic Society.
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moment-generating functions of the error terms.7 The assumptions listed above are sufficient to
point identify all of the unknown parameters, namely the regression functionsmj, j = 1, . . . , J ,
the error distributions Fεj , j = 1, . . . , J and the mixing weight λj , j = 1, . . . , J . The result is
fully nonparametric as it does not rely on any functional form assumptions.

Further, Kitamura (2003) uses the nonparametric identifiability results above to show
identification of finite-dimensional parameters defined by semiparametric restrictions via
instrumental variables when some of the regressors are endogenous. This model qualifies as
semiparametric because the conditional distributions of the error terms are not specified and
thus are treated as nuisance parameters. To our knowledge, a fully nonparametric treatment of
endogeneity in mixture models is a largely unexplored area of research.

Finally, Kitamura (2003) proposes estimation procedures based on the constructive
identification proof. The estimators are fully nonparametric. Moreover, they do not require
numerical optimization to compute, making the method convenient in practice.

2.4. New results on point identification of finite mixtures

The previous three subsections have shown that, in general, strong conditions are needed to
ensure identification of finite mixture models. In Section 2.1, the outcome was assumed to be
at least three-dimensional with each component exhibiting independence. In Section 2.2, the
identifying power came from an exclusion restriction on some of the covariates and, in general,
one could obtain only partial identification in that set-up. Finally, the results in Section 2.3
imposed additional structure and full independence between the regressors and the error terms
was required.

We now present some new point identification results, which apply to general finite mixtures.
In particular, we show that under appropriate conditions on the way in which the covariates enter
the model, we can obtain point identification of all unknown parameters. The set-up is similar
to that of Section 2.2, where only partial identification was achieved in general. For clarity of
exposition, we first focus on the case of two-component mixtures; we then extend the results to
finite mixtures with an arbitrary number of components. The first model we consider is

K(y|z, w, x) = λ(w, x)F1(y|z, x) + (1 − λ(w, x))F2(y|z, x), (2.6)

where Y is a scalar or a vector outcome variable, and X, W and Z = (Z1, Z2)′ are covariates.
Note that the mixing weights are assumed to be a function of W , but not of Z, a restriction to
be relaxed in Section 2.4.4. Conversely, the component CDFs are assumed to depend on Z, but
not on W . Both the component CDFs and the mixing weights are allowed to be a function of X.
Further, for simplicity, we focus on the case whereW , Z1 and Z2 are all scalar-valued. If not, any
element of (W,Z1, Z2) not used for identification can be subsumed into X, whose dimension is
left unspecified. Suppose Y takes its values in Rp. We make the following assumptions.

ASSUMPTION 2.1. The random variables Y , X, Z and W have support Y , X , Z and W ,
respectively, and Z and W are continuously distributed.

Note that Y can be a discrete set, so the result here applies to a mixture of discrete choice
models, or models where the outcome vector has both continuous and discrete elements. For the

7 Alternatively, Kitamura (2003) provides a set of assumptions on the tail behaviour of the characteristic functions of
the error terms’ distributions. These alternative assumptions include relevant cases, such as normal distributions with
different variances and distributions for which the moment-generating functions do not exist.
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rest of the paper, we use the convention that XY denotes the joint support of (X, Y ), XYZ the
joint support of (Y,X,Z), and so on.

ASSUMPTION 2.2. The functions λ(·, x) and Fi(y|·, x) for i = 1, 2, are differentiable for every
(x, y) ∈ X × Rp.

Assumptions 2.1 and 2.2 are not crucial and will be relaxed later. The following conditions,
however, are key to our identification strategy.

ASSUMPTION 2.3. For each (x, z) ∈ XZ there exists y∗ ∈ Rp such that (∂/∂z1)F1(y∗|z, x)
�= 0, (∂/∂z2)F1(y∗|z, x) = 0, (∂/∂z1)F2(y∗|z, x) = 0 and (∂/∂z2)F2(y∗|z, x) �= 0.

Let W|(x, z) be the support of the conditional distribution of W given (X,Z) = (x, z).

ASSUMPTION 2.4. For each (x, z) ∈ XZ there exists w∗ ∈ W|(x, z) such that (∂/∂w)
λ(w∗, x) �= 0.

Assumption 2.3 requires that, for some value in the support of Y , each component conditional
CDF be affected by one of the covariates in the Z vector, but not by the other one. In Section
2.4.3, we relax this condition and consider the case where it holds for only one of the component
CDFs.

Assumption 2.4 is simply requiring the covariate W to enter model (2.6). In fact, if
Assumption 2.4 did not hold, thenW would not affect either the mixing weights or the component
CDFs and thus it would not even enter the conditioning on the left-hand side of (2.6). Further
comments on the identifying assumptions and how they can be substantiated in economic
applications are provided in Remarks 2.3 and 2.4.

We are now ready to state the first new result.

THEOREM 2.1. Consider model (2.6) and let Assumptions 2.1–2.4 hold. Then, the component
CDFs Fi(y|z, x), for i = 1, 2, are nonparametrically identified for every (y, x, z) ∈ Rp × XZ
and λ(w, x) is nonparametrically identified for every (x,w) ∈ XW∗

x , where XW∗
x ≡ {(x,w) ∈

XW such that (∂/∂w)λ(w, x) �= 0}. Moreover, the results are constructive. Specifically,

F1(y|z, x) = K(y|z, w∗, x) − (∂/∂z2)K(y∗|z, w∗, x)

(∂2/∂w∂z2)K(y∗|z, w∗, x)

∂

∂w
K(y|z, w∗, x)

and

F2(y|z, x) = K(y|z, w∗, x) − (∂/∂z1)K(y∗|z, w∗, x)

(∂2/∂w∂z1)K(y∗|z, w∗, x)

∂

∂w
K(y|z, w∗, x).

Further,

λ(w, x) = ζ (w, x)

1 + ζ (w, x)

where

ζ (w, x) ≡ − (∂/∂z1)K(y∗|z, w, x)(∂2/∂w∂z2)K(y∗|z, w, x)

(∂/∂z2)K(y∗|z, w, x)(∂2/∂w∂z1)K(y∗|z, w, x)
.

A few remarks are in order.

REMARK 2.1. The identification strategy used to prove Theorem 2.1 does not impose any
support assumptions on the covariates. This is in contrast to several contributions in the literature,
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which rely on ‘identification at infinity’-type restrictions – see, e.g. Tamer (2003) – for the case
of multiple equilibria in discrete games. It is a well-documented fact that identification at infinity
of a parameter tends to be associated with slow rates of convergence of its estimators; see, for
instance, Chamberlain (1986) and Andrews and Schafgans (1998). Therefore, our constructive
identification results can be used to obtain estimators with better finite-sample properties than
existing estimators.

REMARK 2.2. Unlike the models presented in Section 2.1, no restrictions are imposed on the
dimensionality of the outcome. In particular, we do not need Y to be at least three-dimensional,
as required by the framework of Allman et al. (2009).

REMARK 2.3. The variable W is required to affect the mixing weights (Assumption 2.4),
but not the component distributions. This is the same exclusion restriction that was imposed
in Henry et al. (2014); see Section 2.2 for a discussion of a range of economic applications
where this condition may be plausibly justified. Note that Henry et al. (2014) only relied on the
exclusion restriction on W and obtained a partial identification result. Here, we achieve point
identification because of the additional assumptions on the Z covariates. Moreover, Assumption
2.4 is testable. Using, e.g. (A.5) evaluated at a candidate value of W , one can test the hypothesis
that (∂/∂w)λ(w) is zero by looking at (∂2/∂w∂z1)K(y∗|z, w), which is estimable from
the data.

REMARK 2.4. A sufficient condition for Assumption 2.3 is that, for a given value of X,
F1(y|z, x) = F1(y|z1, x) and F2(y|z, x) = F2(y|z2, x). This constraint is similar in spirit to
exclusion restrictions that are often imposed in discrete games of complete information in
presence of multiple equilibria. For example, Tamer (2003) and Bajari et al. (2010) consider
entry games where the exclusion restriction may be satisfied by variables that enter a firm’s
profit function, but not those of its competitors.

REMARK 2.5. Assumption 2.3 imposes restrictions on the CDFs of the component (conditional)
distributions. These conditions may be reformulated using any other linear functional of the
CDFs, such as the characteristic functions evaluated at a given point or the moments of a given
order.

REMARK 2.6. Assumption 2.3 is essential for identification of the model. However, one
can relax this restriction and still identify some of the parameters of interest. In Section
2.4.3, we consider the case where Assumption 2.3 holds for only one of the component
CDFs and we show that the corresponding CDF is point identified under an additional
assumption.

REMARK 2.7. Assumption 2.1 may be relaxed with minor changes in the statement of
the theorem. Specifically, Section 2.4.2 discusses the case where Z and W have a discrete
distribution.

2.4.1. Mixture model with an arbitrary number of components. The results in Theorem
2.1 extend to the case of mixtures with an arbitrary number of components. Consider the
model

K(y|z, w, x) =
J∑
j=1

λj (w, x)Fj (y|z, x). (2.7)
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It is useful to rewrite this as

K(y|z, w, x) = FJ (y|z, x) +
J−1∑
j=1

λj (w, x)(Fj (y|z, x) − FJ (y|z, x)). (2.8)

In the two-component case, we assumed that Z was a bivariate random variable. In order to
achieve identification, we now need Z to be J -valued.

As in the bivariate mixture case, we make some assumptions that are not essential, but
simplify the analysis.

ASSUMPTION 2.5. The random variables Y , Z andW are continuously distributed, with support
Y , Z and W , respectively.

ASSUMPTION 2.6. The functions λj (·, x) and Fj (y|·, x) for j = 1, . . . , J , are differentiable for
every (x, y) ∈ X × Rp.

As in the two-component case, the key identifying assumptions concern the way in which Z
and W affect the component CDFs and the mixing weights, respectively.

Concerning the component distributions, the generalization of Assumption 2.3 is given by
the following.

ASSUMPTION 2.7. For every (z, x) ∈ ZX , there exists y∗ ∈ Rp such that, for j = 1, . . . , J ,
(∂/∂zj )Fj (y∗|z, x) �= 0 and (∂/∂zi)Fj (y∗|z, x) = 0 for all i �= j .

As for the restrictions imposed on the mixing weights, we first need some definitions. For
a vector w = (w1, . . . , wJ−1) in WJ−1 and x ∈ X , define �(w, x) as the (J − 1)-by-(J − 1)
matrix with its ij th element given by λi(wj, x). In other words, each column of�(w, x) contains
the J − 1 independent mixing weights corresponding to a given value of W . Similarly, define
Dw�(w, x) as the (J − 1)-by-(J − 1) matrix with its ij th element being (∂/∂w)λi(wj, x).

Given the definitions above, the generalization of Assumption 2.4 takes the following form.

ASSUMPTION 2.8. For every x ∈ X , there exists a vector w∗ = (w∗
1, . . . , w

∗
J−1) in WJ−1 such

that �(w∗, x) and Dw�(w∗, x) are nonsingular.

Assumption 2.8 requires W to affect the mixing weights to a sufficient degree and thus is
analogous to the rank condition in instrumental variables models.

In this set-up, the model is point identified, as formalized below.

THEOREM 2.2. Consider model (2.7) and let Assumptions 2.5–2.8 hold. Then, the component
CDFs Fj (y|z, x), for j = 1, . . . , J , are identified for every (y, z, x) ∈ YZX . Further, the matrix
�(w, x) is identified for every (x,w) ∈ XWJ−1

x , where XWJ−1
x ≡ {(x,w) ∈ XWJ−1 such that

�(w, x) and Dw�(w, x) are nonsingular}.

2.4.2. Discrete covariates. A second extension of the basic results covers the case of discrete
covariates.

For a function g : Rd → R, let

�x ′
i ,xi
g(x1, . . . , xd ) ≡ g(x1, . . . , x

′
i , . . . , xd ) − g(x1, . . . , xi, . . . , xd ) (2.9)

denote the difference with respect to the ith argument. We work under the following assumptions.

ASSUMPTION 2.9. The variables Z and W have discrete distributions with support Z and W ,
respectively.
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ASSUMPTION 2.10. For every (z, x) ∈ ZX , there exists y∗ ∈ Y and z′ ∈ Z such that
�z′1,z1F1(y∗|z, x) �= 0, �z′2,z2F1(y∗|z, x) = 0, �z′1,z1F2(y∗|z, x) = 0 and �z′2,z2F2(y∗|z, x) �= 0.

ASSUMPTION 2.11. For every x ∈ X , there exist w∗, w∗′ ∈ W such that �w∗′
,w∗λ(w∗, x) �= 0.

THEOREM 2.3. Consider model (2.6) and let Assumptions 2.9, 2.10 and 2.11 hold. Then, for
every (y, x, z) ∈ YXZ , the component CDFs Fi(y|z, x), for i = 1, 2, are nonparametrically
identified and λ(w, x) is nonparametrically identified for every (x,w) ∈ XW∗

x,d , where
XW∗

x,d ≡ {(x,w) ∈ XW such that�w′,wλ(w∗, x) �= 0 for some w′ ∈ W}. Moreover, the results
are constructive. Specifically,

F1(y|z, x) = K(y|z, w∗, x) − �z′2,z2K(y∗|z, w∗, x)

�w∗′
,w∗�z′2,z2K(y∗|z, w∗, x)

�w∗′
,w∗K(y|z, w∗, x)

F2(y|z, x) = K(y|z, w∗, x) − �z′1,z1K(y∗|z, w∗, x)

�w∗′
,w∗�z′1,z1K(y∗|z, w∗, x)

�w∗′
,w∗K(y|z, w∗, x)

Further,

λ(w, x) = ζ (w, x)

1 + ζ (w, x)

where

ζ (w, x) ≡ −�z′1,z1K(y∗|z, w, x)�w∗′
,w∗�z′2,z2K(y∗|z, w, x)

�z′2,z2K(y∗|z, w, x)�w∗′
,w∗�z′1,z1K(y∗|z, w, x)

.

REMARK 2.8. Even when Z and W are continuously distributed, the result in Theorem 2.3 is
potentially useful in implementing nonparametric estimation, as it allows the econometrician
to avoid nonparametric estimation of derivatives, which have a notoriously slow rate of
convergence. Note that applying the results above to the case where Z and W are continuous
would still require maintaining Assumptions 2.10 and 2.11, which involve discrete differences.

2.4.3. Relaxing Assumption 2.3. The identification strategy for the baseline model crucially
relies on Assumption 2.3. We now try to relax this restriction. In particular, we focus on the case
in which Assumption 2.3 holds for one of the component CDFs, but may be violated for the other
one. For fixed values of X and Z, the model is again

K(y|z, w, x) = λ(w, x)F1(y|z, x) + (1 − λ(w, x))F2(y|z, x),

and we impose the following milder restriction.

ASSUMPTION 2.12. For every (z, x) ∈ ZX , there exists y∗ ∈ Y such that (∂/∂z1)F1(y∗| z, x) �=
0 and (∂/∂z2)F1(y∗|z, x) = 0.

No conditions are imposed on F2 except for the standard requirements that define a CDF.
In this setting, the model is not identified in general. However, under an additional restriction,
it is possible to point identify the component CDF on which the conditions are imposed. The
following formalizes this idea.

ASSUMPTION 2.13. For every (z, x) ∈ ZX , the cross-derivative (∂2/∂z1∂z2)F1(y∗|z, x) exists
and is nonzero.
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THEOREM 2.4. Consider model (2.6) and let Assumptions 2.1, 2.2, 2.4, 2.12 and 2.13 hold.
Then, F1(y|z, x) is nonparametrically identified for every y, z, x ∈ Rp × ZX .

2.4.4. Generalizing the mixture weight function λ. In this subsection we consider a model of
the form

K(y|z, w, x) = λ(z, w, x)F1(y|z, x) + (1 − λ(z, w, x))F2(y|z, x). (2.10)

As before, K(·|·, ·, ·) is the conditional distribution function of Y given (Z,W,X) = (z, w, x),
and is available from the joint distribution of the vector valued random variable (Y,Z,W,X),
which is observable. The component distributions F1(·|·, ·), F2(·|·, ·) and the mixing weight
λ(·, ·, ·) are unknown functions to be identified from the knowledge of K(·|·, ·, ·). We maintain
Assumption 2.1, thus Z and w are continuously distributed.

ASSUMPTION 2.14. The functions λ(·, ·, x) and Fi(y|·, x) for i = 1, 2, are differentiable for
every (y, x) ∈ YX .

As before, it is possible to drop the continuity/differentiability assumptions; see the
discussion in Remark 2.10. The following additional assumptions are made. Recall Y denotes
the support of Y .

ASSUMPTION 2.15. For each (x,w, z) ∈ XWZ , there exist nonempty, nonsingleton sets
Y1(x,w, z) and Y2(x,w, z) in Y such that (a) (∂/∂z2)F1(·|z, x) = 0 and (∂/∂z1)F1(·|z, x) �= 0 on
Y1(x,w, z); (b) (∂/∂z1)F2(·|z, x) = 0 and (∂/∂z2)F2(·|z, x) �= 0 on Y2(x,w, z); (c) the functions
F1(·|z, x) − F2(·|z, x) and (∂/∂z1)F1(·|z, x) are linearly independent on Y1(x,w, z); (d) the
functions F1(·|z, x) − F2(·|z, x) and (∂/∂z2)F2(·|z, x) are linearly independent on Y2(x,w, z).

As before, let W|(x, z) be the support of the conditional distribution of W given (X,Z) =
(x, z).

ASSUMPTION 2.16. For each (x, z) ∈ XZ there exists w∗ ∈ W|(x, z) such that (∂/∂w)
λ(z, w∗, x) �= 0.

The new model (2.10) differs from the original model (2.6) in that it allows the covariate
Z to enter into the mixture weight λ in a completely free manner. In this aspect, therefore, it
generalizes the model (2.6). Note, however, that the assumptions made for the model (2.6) and the
current assumption (i.e. Assumptions 2.15 and 2.16) are non-nested, reflecting a major difference
in the identification strategies for the two models. Therefore, neither of the two models is a special
case of the other. For the current theorem, we assume that there is more than one value of y for
which Assumptions 2.15(a) and (b) hold. However, Assumption 2.3 holding at one value of y
suffices for Theorem 2.1.

Once again, the main application would be a model with unobserved heterogeneity or a model
with multiple equilibria. For example, take the generic demand model described in Henry et al.
(2014) (p. 124). If consumer preferences have two types, say a ‘high’ type and a ‘low’ type, each
corresponding to F1 and F2, then as far as there exists a variable (e.g. geographical variable) that
is correlated with the types but does not enter the utility functions, then such a variable works as
w. Moreover, if there are covariatesZ1 andZ2 such that each only affects each type of consumers,
then they satisfy Assumption 2.15. The previous result in Theorem 2.1 was proved under the
formulation (2.6), which, applied to the current example, would mean that individual types and
the covariates Z = (Z1, Z2) are uncorrelated; this seems a strong restriction. The current theorem
removes this restriction, by allowing for a fully unrestricted and nonparametric dependence of
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the mixing weights λ on Z. Alternatively, suppose we have a model with two equilibria at hand. If
there exist covariates Z1 and Z2 such that Z1 only affects one of the two equilibrium distributions
and Z2 the other, the model falls into the category discussed here. In this case, the function
λ(·, ·, ·) determines the equilibrium selection mechanism, and the specification in this section
allows the equilibrium selection mechanism to depend on the covariate Z in a fully general,
nonparametric manner.

The following theorem shows that the component distribution functions Fi(·|·, ·) and the
mixture weight function λ(·, ·, ·) are nonparametrically identified. Define

K1(x,w, z) :=
{

(ya, yb) ∈ R2p :
∂

∂w
K(ya|z, w, x)

∂2

∂w∂z1
K(yb|z, w, x)

− ∂2

∂w∂z1
K(ya|z, w, x)

∂

∂w
K(yb|z, w, x) �= 0

}

and

K2(x,w, z) :=
{

(yc, yd ) ∈ R2p : − ∂

∂w
K(yc|z, w, x)

∂2

∂w∂z2
K(yd |z, w, x)

+ ∂2

∂w∂z2
K(yc|z, w, x)

∂

∂w
K(yd |z, w, x) �= 0

}
.

It is straightforward to see that the sets K1(x,w, z) ∩ (Y1(x,w, z) × Y1(x,w, z)) and
K2(x,w, z) ∩ (Y2(x,w, z) × Y2(x,w, z)) are nonempty under Assumptions 2.15 and 2.16.
Define

XW∗
x ≡

{
(x,w) ∈ XW :

∂

∂w
λ(z, w, x) �= 0

}

and

XW∗
xZ ≡

{
(x,w, z) ∈ XWZ :

∂

∂w
λ(z, w, x) �= 0

}
.

THEOREM 2.5. Consider model (2.10) and let Assumptions 2.1, 2.15 and 2.16 hold. Then,
the component CDFs Fi(y|z, x), for i = 1, 2, are nonparametrically identified for every
(y, x, z) ∈ Rp × XZ and λ(z, w, x) is nonparametrically identified for every (z, x,w) ∈
ZXW∗

x . Moreover, the results are constructive. That is, for every (y, x,w, z) ∈ Rp × XW∗
xZ ,

F1(y|z, x) = K(y|z, w, x)

− − ∂
∂z2
K(yc|z, w, x) ∂

∂w
K(yd |z, w, x) + ∂

∂z2
K(yd |z, w, x) ∂

∂w
K(yc|z, w, x)

− ∂
∂w
K(yc|z, w, x) ∂2

∂w∂z2
K(yd |z, w, x) + ∂2

∂w∂z2
K(yc|z, w, x) ∂

∂w
K(yd |z, w, x)

× ∂

∂w
K(y|z, w, x),

F2(y|z, x) = K(y|z, w, x)

− − ∂
∂z1
K(ya|z, w, x) ∂

∂w
K(yb|z, w, x) + ∂

∂z1
K(yb|z, w, x) ∂

∂w
K(ya|z, w, x)

∂
∂w
K(ya|z, w, x) ∂2

∂w∂z1
K(yb|z, w, x) − ∂2

∂w∂z1
K(ya|z, w, x) ∂

∂w
K(yb|z, w, x)

× ∂

∂w
K(y|z, w, x),
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and

λ(z, w, x) = ζ (z, w, x)

ζ (z, w, x) + 1
,

where

ζ (z, w, x) := (− ∂
∂z1
K(ya|z, w, x) ∂

∂w
K(yb|z, w, x) + ∂

∂z1
K(yb|z, w, x) ∂

∂w
K(ya|z, w, x))

(− ∂
∂z2
K(yc|z, w, x) ∂

∂w
K(yd |z, w, x) + ∂

∂z2
K(yd |z, w, x) ∂

∂w
K(yc|z, w, x))

× (− ∂
∂w
K(yc|z, w, x) ∂2

∂w∂z2
K(yd |z, w, x) + ∂2

∂w∂z2
K(yc|z, w, x) ∂

∂w
K(yd |z, w, x))

( ∂
∂w
K(ya|z, w, x) ∂2

∂w∂z1
K(yb|z, w, x) − ∂2

∂w∂z1
K(ya|z, w, x) ∂

∂w
K(yb|z, w, x))

if (ya, yb) ∈ K1(x,w, z), (yc, yd ) ∈ K2(x,w, z), ya, yb ∈ Y1(x,w, z) and yc, yd ∈ Y2(x,w, z).

REMARK 2.9. Once again, the identification result is constructive. Note that the sets K1(x,w, z)
and K2(x,w, z) are identifiable from the knowledge of the joint distribution of (y, z, w, x).

REMARK 2.10. Analogously to our treatment of discrete covariates in Theorem 2.3, it is possible
to replace differential operators with difference operators to obtain nonparametric identification
of the model (2.10) when Z and W are discrete random variables. Again, such a result can be
useful in nonparametric estimation even when Z and W are continuously distributed (see the
discussion in Remark 2.8).

3. GENERAL MIXTURES

Section 2 dealt with the case where the distribution of the latent variable is supported on a finite
number of points. We now turn to the more general setting in which the latent variable is allowed
to have infinite support. An important difference with respect to the case of finite mixtures is
that now the dimension of the latent variable giving rise to the mixture plays a key role. The
models considered below illustrate this point in greater detail. Attention is focused on four main
settings: panel data models, mixed proportional hazard models, random coefficients models and
fully nonparametric random utility models.

3.1. Panel data models

A class of models in which general mixtures are used to model unobserved heterogeneity is
panel data models. While there is a vast literature on parametric and semiparametric panel data,
the nonparametric treatment of these models has developed more recently and is still an active
area of research. We focus on the setting considered by Evdokimov (2010). The model takes the
form

yit = m(xit , αi) + εit , i = 1, . . . , n, t = 1, . . . , T , (3.1)

where the scalar outcome Y is modelled as a function of observable covariates X, unobserved
time-invariant heterogeneity α and unobserved idiosyncratic heterogeneity ε. Crucially, the
function m is not specified parametrically and the time-invariant heterogeneity α is not assumed
to enter the outcome equation additively. The latter feature allows for heterogeneous marginal
effects of the covariates on the outcome Y across individuals with different values of α but
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same value of X. In other words, observationally equivalent individuals are allowed to respond
differently to a change in the covariates. The data in several microeconometric applications
suggest that this may be the case, which makes this framework particularly relevant for applied
work.8 Note that the model can be interpreted both as a random effects model and as a fixed
effects model, depending on whether αi is assumed to be independent of Xi or not, respectively.

Under the random effects assumption, the function m is treated nonparametrically, with
a normalization for the distribution of α. Therefore, the unknown parameters are m and the
distribution of ε conditional on covariates. However, in the fixed effects case, the distribution of
α given covariates can be identified and estimated from the data. This is especially relevant for
policy analysis.

Evdokimov (2010) provides sufficient conditions for the nonparametric identification of
the parameters of interest in each of these two settings. A key assumption in each case is
the monotonicity of m in α.9 Importantly, this imposes the implicit restriction that α be
scalar-valued. While this requirement does limit the flexibility of the model, the presence of
the idiosyncratic shock ε makes the framework suitable for modelling a variety of economic
situations. For instance, if the goal is to estimate returns to education, ε could be thought of as the
luck and measurement error component of wages, while α could be interpreted as (time-invariant)
unobserved ability. Another important tool for identification is Kotlarski’s Lemma: for random
variablesX0,X1 andX2 with nonvanishing characteristic functions andE[X0] = m0 being finite,
the characteristic functions ofX0,X1 andX2 are recovered from the joint distribution ofX0 +X1

andX0 +X2, up tom0, with convenient explicit formulas; see, e.g. Prakasa Rao (1983). With the
additive structure with respect to ε, (3.1), applications of Kotlarski’s Lemma are useful in terms
of both identification and estimation.

Two other features make this model appealing to applied researchers. First, only two time
periods (T = 2) are required for identification, which allows the results above to be used with
very short panels. Second, the estimation procedure proposed by Evdokimov (2010) is easy to
implement, as it avoids numerical optimization and only relies on computation of empirical CDFs
and quantile functions.

Finally, it may be useful to compare the results in this paper to those in Kitamura (2003)
discussed in Section 2.3. In both cases, the goal is to nonparametrically identify a regression
model while accounting for unobserved heterogeneity via mixtures. However, Kitamura (2003)
focuses on cross-sectional data and assumes the mixture is finite; each component distribution is
a nonparametric object and therefore unobserved heterogeneity is function-valued (i.e. infinite-
dimensional). Evdokimov (2010) considers panel data and allows the distribution of the latent
variable to be continuous, and possibly with a fixed effects assumption. However, the unobserved
heterogeneity α is assumed to be scalar-valued.

3.2. Mixed proportional hazard model

Another notable example where mixtures play a fundamental role is mixed proportional hazard
models. These models are often used in labour economics to investigate the duration of
unemployment spells. The standard set-up is as follows

θ (t, x) = φ(x)ψ(t)α (3.2)

8 Evdokimov (2010) provides a number of references on this point.
9 Strict monotonicity is required in the fixed effects case, while in the random effects case weak monotonicity suffices.
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F (t |x) = 1 −
∫ ∞

0
e−φ(x)

∫ t
0 ψ(s) dsα dG(α). (3.3)

Equation (3.2) defines the hazard rate, i.e. the ‘intensity’ with which the event of interest – leaving
unemployment, in the labour literature example – occurs. The hazard rate is a function of t , the
time elapsed from a given initial point (e.g. the start of the unemployment spell), covariatesX and
unobserved (by the econometrician) α. Equation (3.3) states that the survival function is given
by a function of the hazard rate and the distribution of α. Note that once again α is scalar-valued.

In single-spell duration models, the researcher is assumed to be able to recover the
distribution F (t |x) from the data. The unknown parameters are the functions φ and ψ , and
the latent variable’s CDF G. In their seminal contribution, Elbers and Ridder (1982) show that
variation in the covariates X nonparametrically identifies all of the parameters of interest under
regularity conditions. The important paper by Heckman and Singer (1984a) expands on these
results in two main directions.

First, the authors provide an alternative set of assumptions that ensure identification. While
these alternative restrictions are not globally weaker than the ones proposed by Elbers and Ridder
(1982), the conditions imposed on the distribution of unobserved heterogeneity are indeed less
restrictive. In particular, Heckman and Singer (1984a) allow the latent variable α not to have
finite moments of any order, thus extending the analysis to fat-tail distributions.

Second, the authors show that it is possible to achieve identification even when the researcher
does not have access to continuous covariates data. This result comes at the cost of imposing
stronger parametric assumptions on the hazard rate. However, the latent variable distribution can
still be treated nonparametrically. In a different paper, Heckman and Singer (1984b) propose a
nonparametric ML procedure to estimate G.

3.3. Random coefficients models

3.3.1. Linear models. Random coefficient linear regression models have been widely used in
estimating economic models incorporating unobserved heterogeneity. The basic model is

Y = β ′X, (3.4)

where Y is a scalar, continuously distributed outcome, X is a d-dimensional vector of observed
covariates and β is a random vector with density fβ . It is often assumed that X = (1, X2 . . . , Xd ),
so that the model can be rewritten as

y = β2x2 + . . .+ βdxd + ε, (3.5)

with ε = β1. Equation (3.5) shows clearly that a random coefficients model can be viewed as a
standard regression model in which the marginal effects of the covariates on the outcome are
allowed to differ across individuals. This feature also characterized the models of Kitamura
(2003) and Evdokimov (2010) discussed in previous sections (equations (2.4) and (3.1),
respectively), though here β is multi-dimensional and continuously distributed. However, while
in those models the regression function was treated nonparametrically, here we assume a linear
relationship.

In this set-up, the structural unknown parameter becomes the distribution of the unobserved
heterogeneity β. Traditionally, the problem has been tackled in one of two ways. One approach is
to impose parametric assumptions (e.g. normality for β and sometimes independence across its
elements as well). These restrictions greatly simplify the problem, but of course misspecification
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becomes a serious concern. Alternatively, one may choose to rely on relatively mild assumptions
on the relationship between covariates and unobserved heterogeneity, such as mean independence
and conditional homoscedasticity of β givenX; see, e.g. the survey by Hsiao and Pesaran (2004).
Under these restrictions, the average marginal effect E[β] and the variance Var(β) are identified.
However, as pointed out by Hoderlein et al. (2010), identification is not achieved for other
important features of the distribution of β. For instance, the quantiles of the marginal distributions
of β and properties depending on moments of order higher than two (such as skewness and
kurtosis) are not uniquely identified from the data.

More recently, the literature in both statistics and econometrics has tried to find an approach
alternative to the above two. The goal is to identify the entire distribution of β while avoiding
parametric assumptions. As the discussion above makes clear, this requires stronger conditions
than mean independence and conditional homoscedasticity. In particular, full independence
between the random coefficients and the covariates X – or some instruments Z – suffices for
nonparametric identification.

A key tool for nonparametric identification of the linear random coefficients regression is the
theory of Radon transforms. The Radon transform Rg of a function g : Rd → R is defined by

(Rg)(z, w) =
∫

s′z=w
g(s) ds, (z, w) ∈ Sd−1 × R, (3.6)

where Sd−1 denotes a (d − 1)-dimensional unit sphere in Rd . The above definition applied to the
random coefficients model (3.4) leads to

f (y|x) =
∫
β ′x=y

fβ(β)dβ = (Rfβ)(x, y). (3.7)

That is, under the assumption of independence between X and β, the Radon transform of fβ is
equal to the conditional density of Y given X. It is known that in (3.6) if g is in L1(Rd ), then
Rg exists for almost all (z, w) ∈ Sd−1 × R and the map g → Rg is injective on L1(Rd ); see
Proposition 3.4 of Helgason (2009). The left-hand side of (3.7) can be recovered from the data,
which suggests that one could apply the inverse Radon transform to an estimator of f (y|x) in
order to estimate the unknown fβ . However, the inverse of R is not a continuous operator and
small changes in its argument may lead to big changes in the value of the resulting estimator. In
other words, this is an ill-posed inverse problem. Some regularization is thus required.

Beran et al. (1996) work with characteristic functions and obtain a consistent and
asymptotically normal estimator for fβ . However, Hoderlein et al. (2010) use (3.7) directly
along with a regularized inverse of R with a kernel smoother; see Cavalier (2000) and Bissantz
et al. (2014) for other applications of kernel smoothing in inverting the Radon operator. The
estimator they propose achieves the optimal rate of convergence in a Sobolev class of functions.
Further, they extend the model to allow for endogeneity of X and for nonlinearities in the way
X affects the outcome Y . Masten (2014) studies nonparametric identification and estimation
of the distribution of random coefficients in a linear simultaneous equation models. Hoderlein
et al. (2015) explore the identifiability of the distribution of random coefficients in a linear
triangular model and provide bounds when point identification is not available, together with
semiparametric and nonparametric estimators.

3.3.2. Discrete choice models. The previous subsection analysed linear random coefficient
models where the outcome variable was assumed to be continuously distributed. However,
in many economic applications, one may be interested in modelling how a discrete variable
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(e.g. the choice whether or not to buy a good) depends on covariates, and to allow for
heterogeneity in this relation across individual observations.10

More specifically, the model we consider is

y = I
{
β ′x ≥ 0

}
, (3.8)

where Y is a binary outcome, X = (1, X2, . . . , Xd ) is a d-dimensional vector of covariates and
β is again assumed to be random with unknown density fβ .

As in the linear case, the literature has traditionally employed a parametric approach to the
identification and estimation of the unobserved heterogeneity distribution. For instance, Train
(2003) discusses the popular choice of mixed logit specifications. The nonparametric treatment of
model (3.8) is a more recent development. An important contribution is the paper by Ichimura and
Thompson (1998), who propose a nonparametric ML estimator (NPMLE) for the distribution of
β. They provide a consistency proof for their NPMLE, which can be regarded as a generalization
of Cosslett’s NPMLE for binary choice models; see Cosslett (1983). Their procedure, however,
is computationally very intensive, as it requires high-dimensional numerical optimization. Note
that numerical optimization for MLE in mixture models can be difficult even when the model is
tackled parametrically.

A recent paper by Gautier and Kitamura (2013) proposes a constructive nonparametric
identification strategy leading to a plug-in estimator that avoids numerical optimization and
integration, and thus is easy to implement and computationally parsimonious. In the basic model,
the paper assumes that X and β are statistically independent. This allows one to write

r(x) ≡ P (Y = 1|X = x) = Eβ[I {β ′X ≥ 0}]. (3.9)

Further, since all that matters is the angle between X and β, without loss of generality we can
normalize X and β so that they both belong to the unit sphere Sd−1. Letting the density fβ of β
be defined with respect to the uniform spherical measure σ on Sd−1, we can then write

r(x) =
∫
b∈Sd−1

I {b′x ≥ 0}fβ(b)dσ (b) =
∫
b∈H (x)

fβ(b)dσ (b) ≡ H(fβ)(x), (3.10)

where H (x) ≡ {b ∈ Sd−1 : b′x ≥ 0}, which is a hemisphere, and the mapping H is called
hemispherical transform.

We now see that analogously to the linear case considered in Section 3.3.1, we obtain an
equation where the left-hand side is estimable from the data (r(x) is the choice probability given
X = x) and the right-hand side is the image of the unknown parameter fβ under the operator
H. However, in the binary choice case, the model is not identified unless further restrictions are
imposed. The reason is that the operator H is in general not injective. In particular, Gautier and
Kitamura (2013) show that the even part of the function fβ , denoted f +

β , is not identified from
(3.10).11 The strategy adopted in the paper consists of two steps. First, conditions are provided
under which f −

β is identified. Second, it is shown that under certain assumptions one can find a
one-to-one mapping between f −

β and fβ , so that fβ is identified as well.

10 For instance, Berry and Haile (2010) discuss nonparametric identification in discrete choice models with random
coefficients which are often used in the industrial organization literature.

11 The even part of a function g, denoted g+, is defined as g+(x) = (g(x) + g(−x))/2. Similarly, the odd part is defined
as g−(x) = (g(x) − g(−x))/2.
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As far as the first step is concerned, a sufficient condition is that the nonconstant covariates
(X2, . . . , Xd ) before normalization be supported on the entire space Rd−1. This rules out discrete
regressors and regressors with bounded support, although Gautier and Kitamura (2013) also
discuss a possible extension to limited-support covariates.

Turning to the second step, a sufficient condition that allows one to recover fβ from f −
β

is that the support of β is a subset of some hemisphere. More precisely, we assume that
there exists a vector c ∈ Sd−1 such that P {β ′c > 0} = 1, which is precisely the identification
condition introduced by Ichimura and Thompson (1998). This assumption does not seem to be
too restrictive in a number of economic applications. For instance, the condition is satisfied with
c being a vector of zeros and one 1 if the researcher is willing to assume that one element of the
β vector is positive. Note that knowledge of which specific element is positive is not required.
A case where the sign of a coefficient may be reasonably assumed to be known is the effect
of own price on demand for a good. Moreover, the support assumption on the distribution of β
imposes constraints on f −

β , which is identified under weak conditions in the first step. Therefore,
the second-step assumption can be tested based on the observables.

Even assuming identification, estimation of fβ is a nontrivial task. Similarly to the linear
random coefficient model, the reason is that the operator H in (3.10) has a discontinuous
inverse. Thus, some regularization procedure is required. Indeed, Gautier and Kitamura (2013)
show that the operator H is an analogue of a convolution operator in Rd , which implies that
inverting it amounts to deconvolution. The formula for the estimator is obtained following
the constructive identification proof. Further, they show that the estimator is consistent,
they derive its rate of convergence and they provide a pointwise asymptotic normality
proof.

The extension to the case where some of the covariates X are endogenous and suitable
instruments are available is also discussed. On a related note, as pointed out by Hoderlein et al.
(2010), the assumption of full independence between X and β is indeed strong, but it can be
tested, at least in principle. One could split the support of X into two subregions and estimate
fβ for each subregion separately. One could then compare the resulting estimates to obtain a
specification test for the model. This procedure could be applied both to the linear model and to
the discrete choice model.

Estimation of random coefficients distributions in more complicated models is of great
interest. For example, Hoderlein et al. (2012) consider identification and estimation of the
joint distribution of vector-valued random coefficients in various structural models under
completeness conditions. Arellano and Bonhomme (2012) consider estimation of moments of
the distribution of random coefficients conditional on observables (thus fixed effects) with panel
data. See Graham and Powell (2012) for further developments in identification and estimation in
such settings.

3.4. Random utility models, revealed preference and nonparametrics

Here, we discuss the analysis of random utility models using revealed preference restrictions,
based on the analysis in Kitamura and Stoye (2013). The treatment is fully nonparametric and,
as such, unobserved heterogeneity is infinite-dimensional.

In the models so far considered in Section 3, the latent variable giving rise to the mixture
has been constrained to be vector-valued (and in some set-ups even scalar-valued). This is in
contrast with the identification analysis for finite mixtures in Section 2, where often component
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distributions are treated nonparametrically, corresponding to infinite-dimensional unobserved
heterogeneity.

The analysis in Kitamura and Stoye (2013) concerns a fully nonparametric analysis of RUMs.
In their analysis, for one thing, unobserved heterogeneity is represented by utility functions
drawn from a general distribution. Therefore, it is clear that the unobserved heterogeneity
has infinite dimension in this context, without assuming finiteness of the support of the
distribution. Given the results presented so far in this paper, one would not expect to obtain
point identification results under the described level of generality. Moreover, unlike standard
nonparametric approaches, little smoothness conditions are imposed, and the focus is to obtain
partial identification results.

In their set-up, the researcher has access to data on price p ∈ Rk (after normalizing income
to be 1) and consumption choices y ∈ Y , where Y ⊂ Rk is a commodity space. Let B(p)
denote the budget set associated with p. We maintain throughout this section that the number
of budget sets (i.e. p1, . . . ,pJ ) is finite. Extending the results to the case of infinitely many
budgets is possible at least on a theoretical level (see McFadden, 2005). Each individual
is associated with a utility function u, which is drawn from the population distribution. As
mentioned above, this is often used as a modelling device to account for heterogeneity in
the preferences across individuals, though here the function u itself is regarded as a random
parameter.

For a given price vector p, the consumer choice y solves the standard maximization problem

y ∈ arg max
x∈B(p)

u(x). (3.11)

The researcher can estimate choice probabilities P {y ∈ A|p}, for A ⊂ Y , from the available
data on prices and consumption choices. The question is then whether the estimated choice
probabilities can be rationalized as an outcome of the RUM outlined above. In other words,
the problem is to find a distribution over individual preferences (i.e. over utility functions)
such that, in the aggregate, the behaviour implied by this distribution is consistent with the
observed consumer choices. This is the essence of the stochastic revealed preference problem
considered by McFadden and Richter (1991).12 It can be viewed as a random utility version of the
(deterministic) revealed preference theory pioneered by Samuelson (1938). The key difference is
that, in the stochastic setting, preferences are allowed to be random draws from the population,
which means that the object that the researcher is concerned with is the distribution over utility
functions rather than their realized values.

Once the identified set for the distribution of the heterogeneous latent preferences has been
obtained, the econometrician can use it to perform counterfactual analysis. Specifically, one can
compute (bounds on) the expected choice probabilities in settings for which no observations
are available. In the case of consumer demand, this amounts to estimating (bounds on) choice
probabilities and expected demand for budget sets that are not in the data.

Traditionally, empirical analysis of the RUM often has been carried out parametrically.
This approach imposes a functional form on the utility function of each consumer; probit/logit
models and their variants have been popular choices in the literature. To allow for
heterogeneity across consumers, the utility function is assumed to depend on a finite-dimensional

12 McFadden and Richter (1991) show that a necessary and sufficient condition for the existence of such a distribution
over preferences is the so-called axiom of revealed stochastic preferences (ARSP). Thus, the stochastic revealed
preference problem may be reformulated as a test of the ARSP.
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parameter, which is modelled as random and plays the role of the latent variable. A second
parametric restriction is usually imposed on the distribution of the latent variable, which is
assumed to belong to a parametric family or to be discrete; see, e.g. McFadden and Train
(2000).

More recently, econometricians have sought approaches that do not rely on the restrictive
parametric assumptions. As is often the case, more flexibility comes at a cost and most of the
papers in this body of research only achieve partial identification of the unobserved heterogeneity
distribution. However, in special settings, it may still be possible to obtain point identification, as
in Cosslett (1983) and Matzkin (1992).

The RUM framework can be studied from a fully nonparametric standpoint. In particular,
in Kitamura and Stoye (2013), no restrictions are imposed on the form of the utility function,
except for the basic rationality and local nonsatiation conditions. As mentioned above, allowing
for such a high degree of flexibility in general precludes point identification. However, it
is still possible to test the existence of a distribution over consumer types (i.e. utilities)
that rationalizes the observed choice behaviour. While the task of testing rationality at the
individual level has been undertaken by many authors, usually they do not use the RUM
formulation.

The procedure proposed by Kitamura and Stoye (2013) involves nuisance parameters with
very high dimensions. Moreover, the implied inequalities take an ‘indirect’ form that makes it
problematic to apply the rich literature on moment inequalities. To see this point in the simplest
possible setting, consider a case with two (intersecting) budget lines (say budget 1 and 2) and
two goods. Denote the segments that are on budget 1 and above (below) budget 2 by segment
A (B), and those on budget 2 and above (below) budget 1 by segment C (D). A consumer’s
choice pattern is represented by a 4 × 1 vector, each element corresponding to segments A, B,
C and D, respectively, and taking the value of 1 (0) if a consumption bundle on the segment is
(not) chosen. For example, a consumer who chooses a bundle on segment A when facing budget
1 and a bundle on segment C when facing budget 2 is represented by (1, 0, 1, 0)′. The basic
revealed preference theory implies that (1, 0, 1, 0)′, (1, 0, 0, 1)′ and (1, 0, 0, 1)′, labelled as a1,
a2 and a3, are valid whereas (0, 1, 0, 1)′ is not. Denoting the conditional choice probabilities
for segments A and B given budget 1 by πA and πB , and defining πC and πD analogously,
let π = (πA, πB, πC, πD)′. According to the McFadden–Richter theory, π is rationalizable
(as an outcome of the RUM) if and only if it belongs to the cone spanned by a1, a2 and
a3, i.e.

π = λ1a1 + λ2a2 + λ3a3, λ1, λ2, λ3 ≥ 0. (3.12)

As this example has a simple structure, it is easy to solve the indirect form of constraints (3.12)
to obtain a system of direct inequalities in terms of the choice probability (i.e. πB + πD ≤ 1), in
addition to trivial constraints automatically satisfied by every valid conditional probability vector.
The condition πB + πD ≤ 1 is a special case of a moment inequality. This operation of obtaining
a moment inequality from the expression (3.12) is theoretically guaranteed by Weyl’s theorem;
see, e.g. Ziegler (1995). Unfortunately, implementing it in a problem with an empirically relevant
scale is computationally prohibitive. Therefore, one cannot rely on standard methods to obtain
critical values, such as moment selection. Kitamura and Stoye (2013) thus employ a modified
bootstrap procedure to compute the critical values for the test. The tools that are developed may
also be used to perform policy evaluation and prediction, and obtain identified regions for various
counterfactuals.
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4. CONCLUSION

This paper considered several recent developments in the econometrics literature on mixture
models. The emphasis has been placed on how these advances can contribute to the usefulness
and flexibility of mixtures in a variety of economics applications. The applications in which these
results may be employed include: multiple equilibria in discrete games (such as games of entry
or technology adoption), analysis of panel data, random utility models and consumer behaviour
analysis, measurement error, switching regression models and proportional hazard models.

We also presented some new results on nonparametric identification of finite mixture models
under exclusion restrictions. Our identification strategy requires very mild conditions on the
support of the covariates. This is in contrast with the identification at infinity approach often
used in the existing literature. It is shown that the basic results can be extended to deal with a
mixture model with an arbitrary number of components and models with discrete covariates.
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APPENDIX

Proof of Theorem 2.1: Because the entire proof is conditional on X = x, we drop this conditioning for
notational convenience.

Equation (2.6) can be rewritten as

K(y|z, w) = F2(y|z) + λ(w)(F1(y|z) − F2(y|z)). (A.1)

Differentiating (A.1) with respect to w, we obtain

∂

∂w
K(y|z, w) = ∂

∂w
λ(w)(F1(y|z) − F2(y|z)) (A.2)

for every y ∈ Y . Moreover, if y = y∗, we can use Assumption 2.3 to obtain

∂

∂z1
K(y∗|z, w) = λ(w)

∂

∂z1
F1(y∗|z) (A.3)
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and

∂

∂z2
K(y∗|z, w) = (1 − λ(w))

∂

∂z2
F2(y∗|z). (A.4)

Differentiating (A.3) and (A.4) with respect to w, we obtain, respectively,

∂2

∂w∂z1
K(y∗|z, w) = ∂

∂w
λ(w)

∂

∂z1
F1(y∗|z) (A.5)

and

∂2

∂w∂z2
K(y∗|z, w) = − ∂

∂w
λ(w)

∂

∂z2
F2(y∗|z). (A.6)

By (A.3) and (A.4), we obtain

(∂/∂z1)K(y∗|z, w)

(∂/∂z2)K(y∗|z, w)
= λ(w)

1 − λ(w)
· (∂/∂z1)F1(y∗|z)

(∂/∂z2)F2(y∗|z)
(A.7)

and by (A.5) and (A.6), for every w ∈ W∗
x , we obtain

(∂2/∂w∂z1)K(y∗|z, w)

(∂2/∂w∂z2)K(y∗|z, w)
= − (∂/∂z1)F1(y∗|z)

(∂/∂z2)F2(y∗|z)
. (A.8)

Combining (A.7) and (A.8) yields

λ(w)

1 − λ(w)
= − (∂/∂z1)K(y∗|z, w)

(∂/∂z2)K(y∗|z, w)
· (∂2/∂w∂z2)K(y∗|z, w)

(∂2/∂w∂z1)K(y∗|z, w)
≡ ζ (w), (A.9)

for every w ∈ W∗
x ≡ {w ∈ W : (∂/∂w)λ(w, x) �= 0}. Therefore,

λ(w) = ζ (w)

1 + ζ (w)
(A.10)

for all w ∈ W∗
x . Because ζ is only a function of observables, (A.10) shows that the mixing weight λ(w) is

identified for all w ∈ W∗
x .

We now turn to showing identification of the component CDFs. The following relationship is useful:

λ(w)

(∂/∂w)λ(w)
= (∂/∂z1)K(y∗|z, w)

(∂2/∂w∂z1)K(y∗|z, w)
. (A.11)

Equation (A.11) follows from (A.3) and (A.5).
Now let w∗ ∈ W∗

x and let y be an arbitrary vector in Y . By (A.1) and (A.2),

K(y|z, w∗) = F2(y|z) + λ(w∗)

(∂/∂w)λ(w∗)
· ∂

∂w
K(y|z, w∗), (A.12)

which, by (A.11), implies

F2(y|z) = K(y|z, w∗) − (∂/∂z1)K(y∗|z, w∗)

(∂2/∂w∂z1)K(y∗|z, w∗)
· ∂

∂w
K(y|z, w∗). (A.13)

Because the value y was arbitrary, (A.13) shows that F2 is identified for every y ∈ Y , given Z = z. F1 can
be treated symmetrically. �

Proof of Theorem 2.2: Because the entire proof is conditional on X = x, we drop the conditioning on
X = x for ease of exposition.
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We first need some notation. For any w ∈ WJ−1, let K(y|z,w) ≡ (K(y|z, w1), . . . , K(y|z, wJ−1))′. Let
Dq denote the differential operator with respect to variable q, so that

DwK(y|z,w) ≡
( ∂

∂w
K(y|z, w1), . . . ,

∂

∂w
K(y|z, wJ−1)

)′
.

Similarly, let Dz−J K(y|z,w) be the (J − 1)-by-(J − 1) matrix with ij th element (∂/∂zj )K(y|z, wi),
i.e. each row contains the derivatives with respect to the different elements of Z−J ≡ (Z1, . . . , ZJ−1)′

for a given value of W , and let Dwz−J K(y|z,w) be the (J − 1)-by-(J − 1) matrix with ij th element
(∂2/∂w∂zj )K(y|z, wi). Analogously, letDzJ K(y|z,w) be the (J − 1)-dimensional vector with j th element
(∂/∂zJ )K(y|z, wj ) and letDwzJ K(y|z,w) be the (J − 1)-dimensional vector with j th element (∂2/∂w∂zJ )
K(y|z, wj ).

Finally, let F(y|z) ≡ (F1(y|z) − FJ (y|z), . . . , FJ−1(y|z) − FJ (y|z))′ and FJ (y|z) ≡ FJ (y|z) · 1, where
1 is the (J − 1)-dimensional column vector of ones. Using the same notation as above, we have that
Dz−J F(y|z) is the (J − 1)-by-(J − 1) matrix with ij th element (∂/∂zj )(Fi(y|z) − FJ (y|z)) andDzJ FJ (y|z)
is the (J − 1)-dimensional column vector (∂/∂zJ )FJ (y|z) · 1.

Given the notation above, we can write model (2.8) as

K(y|z,w) = �(w)′F(y|z) + FJ (y|z). (A.14)

Differentiating (A.14) with respect to W and evaluating at w∗ yields

DwK(y|z,w∗) = Dw�(w∗)′F(y|z). (A.15)

Now we evaluate (A.14) at y∗. Differentiating with respect to Z−J and using Assumption 2.7, we obtain

Dz−J K(y∗|z,w∗) = �(w∗)′Dz−J F(y∗|z). (A.16)

Similarly, differentiation with respect to ZJ yields

DzJ K(y∗|z,w∗) = (I −�(w∗))′DzJ FJ (y∗|z), (A.17)

where I is the (J − 1)-dimensional identity matrix. Differentiating (A.16) and (A.17) again with respect to
W leads to

Dwz−J K(y∗|z,w∗) = Dw�(w∗)′Dz−J F(y∗|z), (A.18)

and

DwzJ K(y∗|z,w∗) = −Dw�(w∗)′DzJ FJ (y∗|z). (A.19)

Note that, by Assumption 2.7, the matrix Dz−J F(y∗|z) is a diagonal matrix with jj th entry
(∂/∂zj )Fj (y∗|z) �= 0, for j = 1, . . . , J − 1, and hence it is invertible. Thus, from (A.16) it follows

�(w∗) = (Dz−J F(y∗|z)′)−1Dz−J K(y∗|z,w∗)′, (A.20)

which shows that, if Dz−J F(y∗|z) is identified, then �(w∗) is identified as well.
Further, (A.18) and (A.19) imply

(Dwz−J K(y∗|z,w∗))−1DwzJ K(y∗|z,w∗) = −(Dz−J F(y∗|z))−1DzJ FJ (y∗|z). (A.21)

Note that the matrix Dwz−J K(y∗|z,w∗) is invertible because Dw�(w∗) is invertible by Assumption 2.8 and
Dz−J F(y∗|z) is invertible because it is full-rank, as discussed above.

Together with the fact that Dz−J F(y∗|z) is a diagonal matrix, (A.21) shows that, if DzJ FJ (y∗|z) were
known, then Dz−J F(y∗|z) would be identified.

Now, (A.17) and (A.20) imply

DzJ FJ (y∗|z) = DzJ K(y∗|z,w∗) +Dz−J K(y∗|z,w∗)(Dz−J F(y∗|z))−1DzJ FJ (y∗|z), (A.22)
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which, by (A.21), becomes

DzJ FJ (y∗|z) = DzJ K(y∗|z,w∗) −Dz−J K(y∗|z,w∗)

×(Dwz−J K(y∗|z,w∗))−1DwzJ K(y∗|z,w∗). (A.23)

Equation (A.23) shows that DzJ FJ (y∗|z) is identified. In fact, because every element of the vector
DzJ FJ (y∗|z) is equal to (∂/∂zJ )FJ (y∗|z), the latter partial derivative is identified by J − 1 distinct
equations.

As noted above, identification of DzJ FJ (y∗|z) implies identification of Dz−J F(y∗|z), which in turn
implies identification of �(w∗).

We now show how to recover the component CDFs. Combining (A.16) and (A.18), we obtain

Dz−J K(y∗|z,w∗)(Dwz−J K(y∗|z,w∗))−1 = �(w∗)′(Dw�(w∗)′)−1. (A.24)

Now, given that �(w∗) is identified as shown above, we can use (A.15) and (A.24) to obtain

F(y|z) = (�(w∗)′)−1Dz−J K(y∗|z,w∗)(Dwz−J K(y∗|z,w∗))−1DwK(y|z,w∗), (A.25)

which shows that F(y|z) is identified. Note that the matrix �(w∗) is invertible by Assumption 2.8.
Finally, using (A.14) and (A.25), we obtain

FJ (y|z) = K(y|z,w∗) −Dz−J K(y∗|z,w∗)(Dwz−J K(y∗|z,w∗))−1DwK(y|z,w∗). (A.26)

�

Proof of Theorem 2.3: The proof proceeds along the same lines as the proof of Theorem 2.1 with the
difference operator defined in (2.9) replacing the differential operator. �

Proof of Theorem 2.4: Again, given that the entire analysis is conditional on X = x, we omit this
conditioning for brevity. We can rewrite (2.6) as

K(y|z, w∗) = F1(y|z) + (1 − λ(w∗))(F2(y|z) − F1(y|z)), (A.27)

which shows that, if (1 − λ(w∗))(F2(y|z) − F1(y|z)) is identified, then F1(y|z) is identified as well.
Differentiating (2.6) and using Assumption 2.12,

∂

∂z2
K(y∗|z, w∗) = (1 − λ(w∗))

∂

∂z2
F2(y∗|z). (A.28)

Differentiating (A.28) with respect to z1,

∂2

∂z1∂z2
K(y∗|z, w∗) = (1 − λ(w∗))

∂2

∂z1∂z2
F2(y∗|z). (A.29)

The cross-derivative exists and is nonzero by Assumption 2.13.
Moreover, differentiating (A.29) with respect to w,

∂3

∂z1∂z2∂w
K(y∗|z, w∗) = − ∂

∂w
λ(w∗) · ∂2

∂z1∂z2
F2(y∗|z). (A.30)

Combining (A.29) and (A.30),

(∂3/∂z1∂z2∂w)K(y∗|z, w∗)

(∂2/∂z1∂z2)K(y∗|z, w∗)
= − (∂/∂w)λ(w∗)

(1 − λ(w∗))
, (A.31)

which shows that the right-hand side of (A.31) is identified.
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Now, differentiating (2.6) with respect to w yields

∂

∂w
K(y|z, w∗) = − ∂

∂w
λ(w∗)(F2(y|z) − F1(y|z))

= − (∂/∂w)λ(w∗)

(1 − λ(w∗))
· (1 − λ(w∗))(F2(y|z) − F1(y|z)). (A.32)

Combining (A.31) and (A.32) shows that (1 − λ(w∗))(F2(y|z) − F1(y|z)) is identified, which implies that
F1(y|z) is identified, as claimed at the outset.

The final formula is

F1(y|z) = K(y|z, w∗) − ∂

∂w
K(y|z, w∗) · (∂2/∂z1∂z2)K(y∗|z, w∗)

(∂3/∂z1∂z2∂w)K(y∗|z, w∗)
. (A.33)

�

Proof of Theorem 2.5: Fix (x,w, z) ∈ XW∗
xZ . As in the proof of Theorem 2.1, all the arguments remain

valid conditional onX = x, and we drop x from the notation. Letting F�(y∗|z) := F1(y|z) − F2(y|z), (2.10)
becomes

K(y|z, w) = F2(y|z) + λ(z, w)F�(y∗|z) (A.34)

Differentiating (A.34) with respect to w,

∂

∂w
K(y|z, w) = ∂

∂w
λ(z, w) · F�(y∗|z) (A.35)

holds for every y ∈ Y . Similarly, differentiating (2.10) with z1 and z2 at y∗
1 ∈ Y1(x,w, z) and y∗

2 ∈
Y2(x,w, z), respectively, by Assumption 2.15 we obtain

∂

∂z1
K(y∗

1 |z, w) = ∂

∂z1
λ(z, w) · F�(y∗

1 |z) + λ(z, w)
∂

∂z1
F1(y∗

1 |z) (A.36)

and

∂2

∂w∂z1
K(y∗

1 |z, w) = ∂2

∂w∂z1
λ(z, w) · F�(y∗

1 |z) + ∂

∂w
λ(z, w)

∂

∂z1
F1(y∗

1 |z), (A.37)

and similar results for (∂/∂z1)K(y∗
1 |z, w) and (∂2/∂w∂z2)K(y∗

2 |z, w).
By (A.37) and (A.35)

∂

∂z1
F1(y∗

1 |z) = 1

(∂/∂w)λ(z, w)

( ∂2

∂w∂z1
K(y∗

1 |z, w) − ∂2

∂w∂z1
λ(z, w) · F�(y∗

1 |z)
)

= 1

(∂/∂w)λ(z, w)

( ∂2

∂w∂z1
K(y∗

1 |z, w) − ∂2

∂w∂z1
λ(z, w)

(∂/∂w)K(y∗
1 |z, w)

(∂/∂w)λ(z, w)

)
.

Using this and (A.35) in (A.36),

∂

∂z1
K(y∗

1 |z, w) = (∂/∂z1)λ(z, w)

(∂/∂w)λ(z, w)

∂

∂w
K(y∗

1 |z, w) + λ(z, w)

(∂/∂w)λ(z, w)

×
( ∂2

∂w∂z1
K(y∗

1 |z, w) − ∂2

∂w∂z1
λ(z, w)

(∂/∂w)K(y∗
1 |z, w)

(∂/∂w)λ(z, w)

)
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= 1

(∂/∂w)λ(z, w)

( ∂

∂z1
λ(z, w) − λ(z, w)(∂2/∂w∂z1)λ(z, w)

(∂/∂w)λ(z, w)

)

× ∂

∂w
K(y∗

1 |z, w) + λ(z, w)

(∂/∂w)λ(z, w)

∂2

∂w∂z1
K(y∗

1 |z, w)

:= β1(z, w)
∂

∂w
K(y∗

1 |z, w) + λ(z, w)

(∂/∂w)λ(z, w)

∂2

∂w∂z1
K(y∗

1 |z, w),

with

β1(z, w) := 1

(∂/∂w)λ(z, w)

(
∂

∂z1
λ(z, w) − λ(z, w)(∂2/∂w∂z1)λ(z, w)

(∂/∂w)λ(z, w)

)
.

Evaluating this at (ya, yb) ∈ K1 ∩ (Y1(x,w, z) × Y1(x,w, z))

⎛
⎜⎜⎝

∂

∂z1
K(ya|z, w)

∂

∂z1
K(yb|z, w)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂

∂w
K(ya|z, w)

∂2

∂w∂z1
K(ya|z, w)

∂

∂w
K(yb|z, w)

∂2

∂w∂z1
K(yb|z, w)

⎞
⎟⎟⎠

⎛
⎝ β1(z, w)

λ(z, w)

(∂/∂w)λ(z, w)

⎞
⎠.

Under Assumptions 2.15 and 2.16

�1 = ∂

∂w
K(ya|z, w)

∂2

∂w∂z1
K(yb|z, w) − ∂2

∂w∂z1
K(ya|z, w)

∂

∂w
K(yb|z, w) �= 0

and

λ(z, w)

(∂/∂w)λ(z, w)
= N1

�1
, (A.38)

where

N1 = − ∂

∂z1
K(ya|z, w)

∂

∂w
K(yb|z, w) + ∂

∂z1
K(yb|z, w)

∂

∂w
K(ya|z, w).

Proceeding similarly, with the roles of the first and the second mixture components switched,

1 − λ(z, w)

(∂/∂w)λ(z, w)
= N2

�2
, (A.39)

where

N2 = − ∂

∂z2
K(yc|z, w)

∂

∂w
K(yd |z, w) + ∂

∂z2
K(yd |z, w)

∂

∂w
K(yc|z, w)

and

�2 = − ∂

∂w
K(yc|z, w)

∂2

∂w∂z2
K(yd |z, w) + ∂2

∂w∂z2
K(yc|z, w)

∂

∂w
K(yd |z, w) �= 0.

By (A.38) and (A.39),

1

(∂/∂w)λ(z, w)
= λ(z, w)

(∂/∂w)λ(z, w)
+ 1 − λ(z, w)

(∂/∂w)λ(z, w)

= N1

�1
+ N2

�2
,

C© 2016 Royal Economic Society.



Using mixtures in econometric models C127

yielding

∂

∂w
λ(z, w) = �1�2

N1�2 +N2�1
.

By (A.38)

λ(z, w) = N1�2

N1�2 +N2�1
.

Moreover, for every y ∈ Y , by (A.35)

F�(y|z) = N1�2 +N2�1

�1�2

∂

∂w
K(y|z, w) (A.40)

and by (A.34)

F2(y|z) = K(y|z, w) − λ(z, w)F�(y|z)

= K(y|z, w) − N1

�1

∂

∂w
K(y|z, w),

also yielding

F1(y|z) = F�(y|z) + F2(y|z)

= N1�2 +N2�1

�1�2

∂

∂w
K(y|z, w) +K(y|z, w) − N1

�1

∂

∂w
K(y|z, w)

= K(y|z, w) − N2

�2

∂

∂w
K(y|z, w). �
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