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Abstract. This paper develops and implements a nonparametric test of Random Utility Models. The

motivating application is to test the null hypothesis that a sample of cross-sectional demand distribu-

tions was generated by a population of rational consumers. We test a necessary and sufficient condition

for this that does not rely on any restriction on unobserved heterogeneity or the number of goods. We

also propose and implement a control function approach to account for endogenous expenditure. An

econometric result of independent interest is a test for linear inequality constraints when these are

represented as the vertices of a polyhedron rather than its faces. An empirical application to the U.K.

Household Expenditure Survey illustrates computational feasibility of the method in demand problems

with 5 goods.

1. Introduction

This paper develops new tools for the nonparametric analysis of Random Utility Models (RUM).

We test the null hypothesis that a repeated cross-section of demand data might have been generated

by a population of rational consumers, without restricting either unobserved heterogeneity or the

number of goods. Equivalently, we empirically test McFadden and Richter’s (1991) Axiom of Revealed

Stochastic Preference.
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Our contribution most directly connects to the recently burgeoning work on nonparametric

demand estimation. Unobserved heterogeneity is a first-order concern in this literature and has

received much renewed attention. It is generally believed to drive low goodness of fit in empirical

demand estimation. Our test can help indicate whether this is true or whether more fundamental

failures of economic assumptions are to blame.

Within this rich literature, there are numerous other, recent papers that nonparametrically test

rationality, bound welfare, or bound demand responses in repeated cross-sections.1 But all papers that

we are aware of have at least one of the following features: (i) Unobserved heterogeneity is restricted;

(ii) the approach is conceptually limited to an environment with two goods or practically limited

to a very small choice universe; (iii) a necessary but not sufficient condition for rationalizability

is tested. The present paper avoids all of these. It is meant to be the beginning of a research

program: Estimation of demand distributions subject to rationalizability constraints, welfare analysis,

and bounds on counterfactual random demand are natural next steps.

Testing at this level of generality is computationally challenging. We provide various algo-

rithms that can be implemented with reasonable computational resources. Also, we establish uniform

asymptotic validity of our test over a large range of parameter values in a setting related to moment

inequalities but where existing methods (notably Generalized Moment Selection; see Andrews and

Soares (2010), Bugni (2010), and Canay (2010)) do not apply. The method by which we ensure this

is of independent interest. Finally, we leverage recent results on control functions (Imbens and Newey

(2009); see also Blundell and Powell (2003)) to deal with endogeneity for unobserved heterogeneity of

unrestricted dimension. All these tools are illustrated with one of the ”work horse” data sets of the

related literature. In that data, estimated demand distributions are not stochastically rationalizable,

but the rejection is not statistically significant.

Our model can be briefly described as follows. Let

u : RK
+ → R

denote a utility function. Each consumer’s choice problem is characterized by some u, some expendi-

ture level W , and a price vector p ∈ RK
+ . The consumer’s demand is determined as

(1.1) y ∈ arg max
x∈RK

+ :p′x≤W
u(x),

1Blundell, Kristensen, and Matzkin (2014), Hausman and Newey (2016), Hoderlein and Stoye (2014), and Manski

(2014) are just a few examples.
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with arbitrary tie-breaking if the utility maximizing y is not unique. For simplicity, we restrict utility

functions by monotonicity (“more is better”), but even this minimal restriction is not conceptually

necessary. Also, imposing strict concavity of u would be easy.

We initially assume that W and p are nonrandom, while the utility function u is randomly

drawn according to probability law Pu:

u ∼ Pu.

Nonrandom W and p are the framework of McFadden and Richter (1991) and others but may

not be realistic in applications. In the econometric analysis in Section 5 as well as in our empirical

analysis in Section 6, we treat w as a random variable that may furthermore covary with u. For the

moment, our assumptions allow us to normalize w = 1 and drop it from notation. The demand y in

equation (3.2) is then indexed by the normalized price vector p. Denoting this by y(p), we have a

collection of distributions of demand

(1.2) Pr(y(p) ∈ Y ), Y ⊂ RK
+

indexed by p ∈ RK
++. Note that in (1.2) it is assumed that Pu is the same across p ∈ RK

++. Once

W (hence p, after income normalization) is formulated as a random variable, this is essentially the

same as imposing W⊥⊥u, an assumption we maintain in Section 5.1, then relax in Section 5.2 and

our empirical application. Throughout the analysis, we do not at all restrict Pu. Thus, we allow for

completely unrestricted, infinite dimensional unobserved heterogeneity across consumers.

We henceforth refer to (1.2) as a Random Utility Model (RUM).2 A RUM is completely pa-

rameterized by Pu, but it only partially identifies Pu because many distinct distributions will be

observationally equivalent in the sense of inducing the same distributions of demand.

Next, consider a finite list of budgets (p1, ..., pJ), and suppose observations of demand y from

repeated cross-sections over J periods are available to the econometrician. In particular, for each

1 ≤ j ≤ J , suppose Nj random draws of y distributed according to

(1.3) Pj(Y ) := Pr(y(pj) ∈ Y ), Y ⊂ RK
+

are observed by the econometrician. Define N =
∑J

j=1Nj for later use. Then Pj(Y ) can be estimated

consistently as Nj ↑ ∞ for each j, 1 ≤ j ≤ J . The question is whether the estimated distributions

2Thus, we interpret randomness of u as arising from unobserved heterogeneity across individuals. Random utility

models were originally developed in mathematical psychology, and in principle, our results also apply to stochastic choice

behavior by an individual. However, in these settings it would frequently be natural to impose much more structure

than we do.
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may, up to sampling uncertainty, have arisen from a RUM. In the idealized setting in which there are

truly J budgets, we show how to test this without any further assumptions.3

The main goals of our paper are as follows. We first show how to test stochastic rationalizability

of a given data set and demonstrate this using the UK Household Expenditure Survey. The adequacy

of the rationality assumption is undoubtedly a fundamental question. Even if we were to eventually

proceed to counterfactual analysis and policy evaluation that often assumes rationality at the basic

level, testing rationality without introducing ad hoc conditions would be a natural and important

first step. Second, once a practical procedure for rationality testing is developed, it is straightforward

to use it to obtain counterfactuals and carry out inference about them, once again under minimal

assumptions. Some of this will be shown in Section 7.1. Third, this paper aims to offer a new

statistical test with broad applicability. Though our procedure is motivated by the standard revealed

preference axioms and that is also the application we report, the method has been used for other

models as well. For example, our test has been applied to a nonparametric game theoretic model with

strategic complementarity by Lazzati, Quah, and Shirai (2015) and to a novel, nonparametric model of

“price preference” by Deb, Kitamura, Quah, and Stoye (2016). These are economically very different

from standard revealed preference, yet our methods have been applied to them successfully. Uses of

our algorithms for choice extrapolation in Manski (2014) and Adams (2016) are closer to our original

motivation, but the former demonstrates that a restriction to linear budgets is not necessary. Indeed,

the only way that the economics of a model affects our inference procedure is through the matrix

A defined later. The rest of the algorithm remains the same if model elements such the standard

revealed preference axiom or linear budget sets are replaced by other specifications.

The remainder of this paper is organized as follows. Section 2 discusses the related literature.

Section 3 develops a simple geometric characterization of the empirical content of a RUM. This is

a ”population level” (all identifiable quantities are known) analysis that is related to classic work

by McFadden and Richter (1991). Section 4 explains our test and its implementation under the as-

sumption that one has an estimator of demand distributions and an approximation of the estimator’s

sampling distribution. Section 5 explains how to get the estimator, and a bootstrap approximation

to its distribution, by both smoothing over income and adjusting for endogeneous expenditure. Sec-

tion 6 contains our empirical application. Section 7 presents important additional applications and

3In the empirical application, there is a finite list of prices but continuous expenditure. We estimate demand at

certain expenditure levels and therefore make some smoothness assumptions.
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extensions. Section 8 concludes. All proofs are collected in appendix 9, and pseudocode for some

algorithms is in appendix 10.

2. Related Literature

Our framework for testing Random Utility Models is built from scratch in the sense that it

only presupposes classic results on nonstochastic revealed preference, notably the characterization

of individual level rationalizability through SARP (Houthakker (1950)) and GARP (Afriat (1967)).

(See also especially Samuelson (1938), Richter (1966), and Varian (1982).) At the population level,

stochastic rationalizability was analyzed in classic work by McFadden and Richter (1991) updated by

McFadden (2005). This work was an important inspiration for ours, and for the purpose of theoretical

revealed preference analysis, the development in Section 3 clarifies and modestly extend theirs. Indeed,

our test can be interpreted as statistical test of their Axiom of Revealed Stochastic Preference (ARSP).

They did not consider statistical testing nor attempted to make the test operational (and could not

have done so with computational constraints even of 2005).

An influential related research project is embodied in a sequence of papers by Blundell, Brown-

ing, and Crawford (2003, 2007, 2008; BBC henceforth). They assume the same observables as we do

and apply their method to the same data. The core difference is that BBC analyze one individual

level demand system generated by nonparametric estimation of Engel curves. This could be loosely

characterized as revealed preference analysis of a representative consumer and in practice of average

demand, where the 2003 paper focuses on testing rationality and bounding welfare and later papers

focus on bounding counterfactual demand. Lewbel (2001) gives conditions on Random Utility Models

that ensure integrability of average demand, so BBC can be thought of as adding those assumptions

to ours. Also, the nonparametric estimation step in practice limits their approach to low dimensional

commodity spaces, whereas we present an application to 5 goods.4

Manski (2007) analyzes stochastic choice from subsets of an abstract, finite choice universe.

He states the testing and extrapolation problems in the abstract, solves them explicitly in simple

examples, and outlines an approach to non-asymptotic inference. (He also considers models with

more structure.) While we start from a continuous problem and build a (uniform) asymptotic theory,

the settings become similar after Proposition 3.1 below. The core difference is that in the most general

4BBC’s implementation exploits only the Weak Axiom of Revealed Preference (WARP) and therefore a necessary

but not sufficient condition for rationalizability. This can be remedied, however. See Blundell, Browning, Cherchye,

Crawford, De Rock, and Vermeulen (2015).
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case, methods in Manski (2007) will not be practical for a choice universe containing more than a few

elements. In a related paper, Manski (2014) uses our computational toolkit for choice extrapolation.

Our setting much simplifies if there are only two goods, an interesting but obviously very specific

case. Blundell, Kristensen, and Matzkin (2014) bound counterfactual demand in this setting through

bounding quantile demands.5 They justify this through an invertibility assumption. Hoderlein and

Stoye (2015) show that with two goods, this assumption has no observational implications.6 Hence,

Blundell, Kristensen, and Matzkin (2014) use the same assumptions as we do; however, the restriction

to two goods is fundamental. Hausman and Newey (2016) nonparametrically bound welfare and

income effects under assumptions resembling ours. Beyond a smoothness restriction (that we do not

impose in theory, but we do use one in the empirical implementation), most of their results are specific

to two goods. Our method conceptually applies to any number of goods and is practically applicable

to at least five goods.

With more than two goods, pairwise testing of a stochastic analog of WARP amounts to testing

a necessary but not sufficient condition for stochastic rationalizability. This is explored by Hoderlein

and Stoye (2014) in a setting that is otherwise ours and also on the same data. Kawaguchi (2016) tests

a logically intermediate condition, again on the same data. A different test of necessary conditions

was proposed by Hoderlein (2011), who shows that certain features of rational individual demand, like

adding up and standard properties of the Slutsky matrix, are inherited by average demand under weak

conditions. The resulting test is passed by the same data we use. Dette, Hoderlein, and Neumeyer

(2016) propose a similar test using quantiles.

In sum, every paper cited in this section has one of the features (i)-(iii) mentioned in the

introduction. We feel that removing aggregation or invertibility conditions is useful because these are

usually assumptions of convenience. Testing necessary and sufficient conditions is obviously (at least

in principle) sharper than testing necessary ones. And there are many empirical applications with

more than two goods.

Section 4 of this paper is (implicitly) about testing multiple inequalities, the subject of a large

literature in economics and statistics. See, in particular, Gourieroux, Holly, and Monfort (1982) and

Wolak (1991) and also Chernoff (1954), Kudo (1963), Perlman (1969), Shapiro (1988), Takemura

and Kuriki (1997), Andrews (1991), Bugni, Canay, and Shi (2015), and Guggenberger, Hahn, and

5The α-quantile demand induced by π is the nonstochastic demand system defined by the α-quantiles of πj across j.

It is well defined only if K = 2.

6A similar point is made, and exploited, by Hausman and Newey (2016).
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Kim (2008). For the also related setting of inference on parameters defined by moment inequalities,

see furthermore Andrews and Soares (2010), Bugni (2010), Canay (2010), Chernozhukov, Hong, and

Tamer (2007), Imbens and Manski (2004), Romano and Shaikh (2010), Rosen (2008), and Stoye

(2009). The major difference to these literatures is that moment inequalities, if linear (which most

of the papers do not assume), define the faces of a polyhedron. The restrictions generated by our

model are more akin to defining the polyhedron’s vertices. One cannot in practice switch between

these representations in high dimensions, so that we have to develop a new approach. In contrast, the

inference theory in Hoderlein and Stoye (2014) only requires comparing two budgets. Because of this

simple structure, they can express their hypotheses in terms of faces of polyhedra. While they use the

structure of the model to improve on mechanical application of earlier results, no major conceptual

advance is needed.

3. Analysis of Population Level Problem

In this section, we show how to verify rationalizability of a known set of cross-sectional demand

distributions on J budgets. The main result is a relatively tractable geometric characterization of

stochastic rationalizability.

Assume there is a finite sequence of J budget planes

Bj = {y ∈ RK
+ : p′jy = 1}, j = 1, ..., J

and that the researcher observes the corresponding vector (P1, ..., PJ) of cross-sectional distributions

of demand Pj as defined in 1.3. We will call (P1, ..., PJ) a stochastic demand system henceforth. Using

a ”more is better” assumption, we restrict choice to budget planes to simplify notation; this restriction

is not essential to the method. We also do not restrict the number of goods K.

Definition 3.1. The stochastic demand system (P1, ..., PJ) is stochastically rationalizable if there

exists a distribution Pu over utility functions u so that

(3.1) Pj(Y ) =

∫
1{arg max

x∈RK
+ :p′jx=1

u(x) ∈ Y }dPu, Y ⊂ Bj , j = 1, ..., J.

Remark 3.1. Define

(3.2) D(p, u) := arg max
x∈RK

+ :p′x=1
u(x)

as the (nonstochastic) demand function induced by utility function u. Then 3.1 holds iff there exists

a distribution Pu over utility functions that induces Pj as distribution of D(pj , u), j = 1, ..., J .
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Figure 1. Visualization of Example 3.1.

This model is extremely general. While we nominally assume that arg maxx∈Bj u(x) is unique,

this is really a normalization because a unique demand is observed for each data point. We already

pointed out that ”more is better” is not essential either. The model is also extremely rich - a parame-

terization would involve an essentially unrestricted distribution over utility functions. Verifying (3.1)

therefore seems formidable. We will dramatically simplify this problem in several steps. Our running

example will be the following:

Example 3.1. There are two budgets and they intersect, thus J = 2 and there exists y ∈ RK
++ with

p′1y = p′2y.

The example is illustrated in Figure 1. Certain details of the Figure will be explained later.

We will look at much more involved examples at the end of this section.

3.1. Discretizing the Testing Problem. In a first step, we replace the nonparametric RUM with

a finite dimensional discrete choice model. This transformation involves no loss of information: The

stochastic demand system is stochastically rationalizable iff some other demand system defined below

for a model with finite universal choice set is. Therefore, while we dramatically simplify the model,

we continue to test a necessary and sufficient condition for stochastic rationalizability in the original

problem.
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Any demand function D(p, u) impacts (P1, ..., PJ) only through (D(p1, u), ..., D(pJ , u)). Thus

we have:

Remark 3.2. Call a vector d = (d1, ..., dJ) ∈ B1× ...×BJ rationalizable if d = (D(p1, u), ..., D(pJ , u))

for some u. Let the set D ⊂ B1 × ...× BJ collect all rationalizable such vectors. Then (3.1) holds iff

there exists a distribution Pd on D such that

(3.3) Pj(Y ) =

∫
1{dj ∈ Y }dPd, Y ⊂ Bj , j = 1, ..., J.

Next, a demand vector (d1, ..., dJ) is rationalizable iff it fulfills the Generalized Axiom of Re-

vealed Preference (GARP). (Alternatively, use the strong axiom (SARP) to restrict attention to

strictly convex u.) The only information needed to verify this is whether, for different values of j

and k, one has p′jdj > p′jdk, p
′
jdj = p′jdk, or p′jdj < p′jdk. If two distinct demand vectors agree on

all of these comparisons, then either both or neither are rationalizable, and no information is lost by

treating them as equivalent. This will allow us to restrict attention to a finite subset of D.

Formalizing this requires some definitions.

Definition 3.2. Let X := {x1, ..., xI} be the coarsest partition of ∪Jj=1Bj such that (i) each Bj
equals the union of some subset of the partition; (ii) for any i ∈ {1, ..., I} and j ∈ {1, ..., J}, xi
is either completely on, completely strictly above, or completely strictly below Bj . Elements of X
will be called patches. Elements of of X that are part of more than one budget will also be called

intersection patches. The number of patches that jointly comprise budget Bj will be called Ij . Note

that
∑J

j=1 Ij ≥ I, strictly so (because of multiple counting of intersection patches) if any two budget

planes intersect.

Remark 3.3. Ij ≤ I ≤ 3J , hence Ij and I are finite.

Definition 3.3. The discretized equivalent Y∗ of of Y is an arbitrary, but henceforth fixed, vector

(y∗1, ..., y
∗
I ) ∈ x1 × ...× xI .

Then we have:

Proposition 3.1. Suppose that two stochastic demand systems (P1, ..., PJ) and (P ∗1 , ..., P
∗
J ) agree on

the probabilities of all patches, i.e. Pj(xi) = P ∗j (xi) for all j = 1, ..., J and xi ∈ X . Then each demand

system is rationalizable iff the other one is. In particular, this applies if (P ∗1 , ..., P
∗
J ) is concentrated

on Y∗.
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Revisiting Example 3.1. The patches generated by Example 3.1 are illustrated in Figure 1.

There are five of them. Four are marked π1|1 and so on; the meaning of this will become clear. These

can be described as ”on budget 1 but below budget 2” and so on. The fifth patch is the intersection

point. Each budget consists of three patches.

3.2. Geometric Characterization. Proposition 3.1 allows us to transform the problem into one

with finite universal choice set. The next step is a geometric characterization of stochastic rationaliz-

ability. This requires a few more definitions.

Definition 3.4. The vector representation of (B1, ...,BJ) is a vector of length
∑J

j=1 Ij whose first I1

components are the patches comprising B1, the next I2 components are the patches comprising B2,

and so forth. The ordering of elements within budgets is arbitrary but henceforth fixed. Note that a

patch in the intersection of budgets will appear repeatedly.

Definition 3.5. The vector representation of (P1, ..., PJ) is the vector π of length
∑J

j=1 Ij whose

first I1 elements are the probabilities assigned by P1 to patches within B1 and so forth. The order of

elements corresponds to the vector representation of budgets.

In the following, fix (P1, ..., PJ) and let (P ∗1 , ..., P
∗
J ) be the equivalent (in the sense of Proposition

3.1) demand system that is concentrated on Y∗. Note that (P ∗1 , ..., P
∗
J ) is completely determined by

π: The first I1 elements of π define the probability mass function corresponding to P ∗1 and so forth.

Next, if (P ∗1 , ..., P
∗
J ) is rationalizable, then Remark 3.2 must apply, where Pd is furthermore

concentrated on nonstochastic demand systems that are, in turn, concentrated on Y∗. Any such

nonstochastic demand system has a natural vector representation as well.

Definition 3.6. Consider a nonstochastic demand system d∗ that only selects elements of Y∗. The

vector representation of d∗ is the vector representation of the degenerate stochastic demand system

that corresponds to d∗. Thus, it it a binary vector a of length
∑J

j=1 Ij such that exactly one of the

first I1 entries equals 1, exactly one of the next I2 entries equals 1, and so forth, and where the entries

of 1 indicate which element of Y∗ was chosen from the respective budget.

Definition 3.7. The rational demand matrix A is the (unique, up to ordering of columns) smallest

matrix such that the vector representation a of each rationalizable nonstochastic demand system d∗

concentrated on Y∗ is a column of A. The number of columns of A is denoted H.

Remark 3.4. H ≤∏J
j=1 Ij , hence H is finite.



11

Then Proposition 3.1 and Remark 3.2 imply the following.

Proposition 3.2. The stochastic demand system (P1, ..., PJ) is rationalizable iff its vector represen-

tation can be written as

(3.4) π = Aν for some ν ∈ ∆H−1,

where ∆H−1 is the unit simplex in RH . Furthermore, this representation obtains iff

(3.5) π = Aν for some ν ≥ 0.

The vector ν can be interpreted as distribution over (1, ...,H), hence Proposition 3.2 says that

π must be representable as mixture over the columns of A. Intuitively, A is a list of (vector repre-

sentations of) all rationalizable individual choice types who only choose from Y∗, and ν represents a

population distribution over such types that therefore rationalizes the (P ∗1 , ..., P
∗
J ) – and, by implica-

tion, any (P1, ..., PJ) – that corresponds to π. Note that ν is not in general unique. Finally, Aν = π

implies 1′Hν = 1, therefore we do not need to explicitly impose the latter. This detail improves on a

similar result in McFadden (2005).

In sum, we reduced the extremely complex (3.1) to the condition that some vector of proba-

bilities must be in the column cone of some matrix A. For known A and π, this is easily checked even

if these objects are very large. The main caveat is that the matrix A can be hard to compute.

We conclude this section with a number of remarks.

GARP vs SARP. We reiterate that rationalizability of nonstochastic demand systems can

be defined, and our test can therefore be applied, using either GARP or SARP. SARP will define a

somewhat smaller matrix A, but nothing else changes. Note that weak revealed preference occurs if

demand on some budget Bi is also on some other budget plane Bj . Therefore, GARP and SARP can

differ only in the assessment of demand vectors that contain at least three intersection patches.

Simplification if demand is continuous. Intersection patches are of lower dimension than

budget planes. Thus, if the distribution of demand is known to be continuous, their probability is

known to be zero, and they can be eliminated from Y∗. In large problems, this will considerably

simplify A. Also, each remaining patch is a subset of exactly one budget plane, so that
∑J

j=1 Ij = I.

We impose this simplification henceforth and in our empirical application, but none of our results and

algorithms depend on it. Observe finally that SARP agrees with GARP in this case.

Revisiting Example 3.1. Assume that demand is distributed continuously, then the intersec-

tion patch can be dropped and Y∗ has I = 4 elements. WARP, SARP, and GARP all agree on which
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choice patrtern to exclude. Index patches such that the excluded demand vector is d = (1, 0, 1, 0).

Then

A =


1 0 0

0 1 1

0 1 0

1 0 1

 .
The column cone of A can be explicitly written as

C =




ν1

ν2 + ν3

ν2

ν1 + ν3

 : ν1, ν2, ν3 ≥ 0


.

The restriction of (P1, P2) to patches is a vector π = (π1|1, π2|1, π1|2, π2|2), where the order of probabili-

ties corresponds to the order of patches and where Figure 1 visualizes the interpretation of these patch

probabilities. We formalize this notation below. and its components are visualized in Figure 1. The

only restriction on π beyond adding-up constraints is that π1|1 + π1|2 ≤ 1 or equivalently π2|2 ≥ π1|1.

This is well known to be the exact implication of a RUM for this example (Matzkin (2006); Hoderlein

and Stoye (2015)).

Generality of our characterization. The above characterization applies immediately if the

choice universe is finite to begin with or if a discretization trick similar to Proposition 3.1 is available.

See Manski (2007) for an example of the former and Deb, Kitamura, Quah, and Stoye (2016) for

an example of the latter. Linearity of budgets sets is not required either; see Manski (2014) for an

application where budget sets are kinked. Also, in some applications the choice universe is discrete;

e.g., a good has to be bought in integer quantities. This is not a problem conceptually. In cases that

are covered by Polisson and Quah (2013), e.g. integer constraints superimposed on otherwise standard

budgets, it does not even make an operational difference.

3.3. Computing A. We next elaborate how to compute A from a vector of prices (p1, ..., pJ). For ease

of exposition, we assume that intersection patches can be dropped. We add remarks on generalization

along the way. We split the problem into two subproblems, namely checking whether a ”candidate”

vector a is the representation of a rationalizable demand system (a is then called rationalizable below)

and finding all such vectors.



13

Checking rationalizability of a vector a.

Consider any binary I-vector a with at most one entry of 1 on each subvector corresponding

to one budget. This vector can be thought of as encoding choice behavior on all or some budgets.

It is complete if it has exactly J entries of 1, i.e. it specifies a choice from each budget. It is called

incomplete otherwise. It is called rationalizable if those choices that are specified jointly fulfil GARP.

The rationalizable demand matrix A collects all complete rationalizable vectors a.

To check rationalizability of a given, complete or incomplete, vector a, we initially extract from

it a directly revealed preference relation. For example, if y∗i is chosen from budget Bj , then it is

revealed preferred to all y∗k on or below Bj . This information can be extracted extremely quickly.7

We next check whether the transitive completion of directly revealed preference is cyclical.

This is done by checking cyclicality of the directed graph in which nodes correspond to elements of Y∗

and in which a directed link indicates directly revealed preference. Operationally, this check can use

either the Floyd-Warshall algorithm Floyd (1962), a Depth-first search of the graph, or a Breadth-first

search. All methods compute quickly in our application. An important simplification is to notice that

revealed preference cycles can only pass through nodes y∗i that were in fact chosen. Hence, it suffices

to look for cycles on the subgraph with the (at most) J corresponding nodes. This dramatically

simplifies the problem as I increases rapidly with J . Indeed, increasing K does not increase the size

of graphs checked in this step, though it tends to lead to more intricate patterns of overlap between

budgets and, therefore, to richer revealed preference relations.

In this heuristic explanation, we interpreted all revealed preferences as strict. This is without

loss of generality absent intersection patches because GARP and SARP then agree. If intersection

patches are retained, the method just described tests SARP and not GARP. To test GARP, one would

have to check rejected vectors a for the possibility that all revealed preference cycles are weak and

accept them if this is the case.8

Collecting rationalizable vectors.

This step is a bottleneck. We very briefly mention two approaches that we do not recommend.

First, one could generate one candidate vector a from each of the
J∏
j=1

Ij conceivable choice patterns

7In a preliminary step of the implementation, we compute a (I × J)-matrix X where, for example, the i-th row of

X is [0,−1, 1, 1, 1] if y∗i is on budget B1, below budget B2, and above the remaining budgets. Preferences revealed by

choice from budget Bj can be read off the j-th column of X.
8The matrix X from footnote 7 is designed to allow for this as its entries of 0 and 1 differentiate between weak and

strict preference. The information is not exploited in our empirical example.
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over patches and then check rationalizability of all of these columns. We implemented this approach

for debugging purposes, but computational cost escalates rapidly. Similarly, we do not recommend to

initially list all possible preference orderings over patches and then generate columns of A from them.

Our benchmark algorithm is based on representing all conceivable vectors a as leaves (terminal

nodes) of a rooted tree that is recursively constructed as follows: The root has I1 children corre-

sponding to elements of B1 ∩ Y∗. Each of these children has I2 children that correspond to patches

in B2 ∩Y∗, and so on for J generations. The leaves of the tree correspond to complete vectors a that

specify to choose the leaf and all its ancestors from the respective budgets. Non-terminal nodes can

be similarly identified with incomplete vectors.

The algorithm attempts a depth-first search of the tree. At each node, rationalizability of the

corresponding vector is checked. If an inconsistency is detected, the node and its entire subtree are

deleted. If the node is a leaf and no inconsistency is detected, then a new column of A has been

discovered. The algorithm terminates when each node has been either visited or deleted. It discovers

each column of A exactly once. Elimination of subtrees means that the vast majority of complete

candidate vectors are never visited. Pseudocode for the algorithm is displayed in appendix B.

Finally, a modest amount of problem-specific adjustment can lead to further, dramatic im-

provement. The key to this is contained in the following proposition.

Proposition 3.3. Suppose that for some M ≥ 1, either all of (B1, ...,BM ) are contained in BJ or they

all contain it. Suppose also that choices from (B1, ...,BJ−1) are jointly rationalizable. Then choices

from (B1, ...,BJ) are jointly rationalizable iff choices from (BM+1, ...,BJ) are.

This proposition is helpful whenever not all budgets mutually intersect. In that case, all ra-

tionalizable demand systems can be discovered by finding rationalizable demand systems on smaller

domains and combining the results. In particular, iterated application of Proposition 3.3 informs the

following strategy, which is also provided as pseudocode in appendix B. First, construct a matrix

AM+1,J−1 only for (BM+1, ...,BJ−1). Next, for each column of AM+1,J−1, find all rationalizable com-

pletions to (B1, ...,BJ−1) as well as all rationalizable completions to (BM+1, ...,BJ). Each combination

of two such completions is rationalizable. No step in this algorithm checks rationalizability on J

budgets at once; furthermore, a Cartesian product structure of the columns of A is exploited. In our

application, the refinement improves computation time for some of the largest matrices by orders of

magnitude, although the depth-first search proved so fast that our replication code omits this step.
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3.4. Additional Examples. We conclude this section with some more involved examples. For this

purpose, we introduce one new notation:

Notation. In this section and the next two, elements of X defined in Definition 3.2 will be indexed as

X ∩Bj = {x1|j , ..., xIj |j} for 1 ≤ j ≤ J . For example, patch x2|4 refers to the second patch on Budget

B4. The ordering of patches within each budget corresponds to the vector representation of budgets.

Example 3.2. The following is the simplest example in which WARP does not imply SARP, so

that tests based on applying Example 3.1 to all pairs of budgets would not have full power. Let

K = J = 3. Let prices be (p1, p2, p3) = ((1/2, 1/4, 1/4), (1/4, 1/2, 1/4), (1/4, 1/4, 1/2)).9 In this

example, each budget has 4 patches for a total of I = 12 patches. This yields 43 = 64 candidate

vectors a, H = 25 of whom are rationalizable:

A =



x1|1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

x2|1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0

x3|1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

x4|1 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1

x1|2 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

x2|2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

x3|2 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0

x4|2 0 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1

x1|3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x2|3 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x3|3 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

x4|3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1



.

If one knows the mutual relation of patches, one can make sense of this matrix. For example,

a consumer choosing x1|1 but also x1|2 would violate WARP as both patches lie below the respec-

tive other budget. Thus, no column of A equals [1, 0, 0, 0, 1, ...]. More subtly, the demand vectors

mentioned in footnote 5 lie on patches x3|1, x2|2, and x3|3. Thus, A does not contain the column

[0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0]′.

9To see that WARP does not imply SARP in this specific example, consider demand vectors (q1, q2, q3) =

((1, 1/2, 3/2), (3/2, 1, 1/2), (1/2, 3/2, 1)). Then p1q2 = p2q3 = p3q1 = 9/8 and p1q3 = p2q1 = p3q2 = 7/8, hence

choices from pairs of budgets fulfil WARP but violate SARP.
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Figure 2. Visualization of one budget set in the empirical application.

Example 3.3. Our empirical application has sequences of J = 7 budgets in RK for K = 3, 4, 5 and

sequences of J = 8 budgets in R3. The largest A-matrices are of sizes 78× 336467 and 79× 313440.

In exploratory work using longer sequences of budgets, we computed an A matrix with over 2 million

columns in a few hours on Cornell’s CISER server (12 workers, Intel Xeon CPU E7 4870).

Figure 2 visualizes one budget in R3 from our empirical application and its intersection with

6 other budgets. There are total of 35 patches, 25 of which are intersection patches, so that in our

empirical application, this is treated as a budget with 10 patches.



17

4. Statistical Testing

This section lays out our statistical testing procedure in the idealized situation where, for finite

J , repeated cross-sectional observations of demand over J periods are available to the econometrician,

where each cross-section of size Nj is observed over the deterministically determined (and hence

exogenous) budget plane for period j. Then the probabilities in π were estimated by corresponding

sample frequencies. We define a test statistic and critical value and show that the resulting test is

uniformly asymptotically valid over an interesting range of d.g.p.’s.

4.1. Null Hypothesis and Test Statistic. Recall from (3.5) that we wish to test:

(HA): There exist ν ≥ 0 such that Aν = π.

This hypothesis is equivalent to

(HB): minη∈C [π − η]′Ω[π − η] = 0,

where Ω is a positive definite matrix (restricted to be diagonal in our inference procedure) and C :=

{Aν|ν ≥ 0} is a convex cone in RI . The solution η0 of (HB) is the projection of π ∈ RI
+ onto C under

the weighted norm ‖x‖Ω =
√
x′Ωx. The corresponding value of the objective function is the squared

length of the projection residual vector. The projection η0 is unique, but the corresponding ν is not.

Stochastic rationality holds if and only if the length of the residual vector is zero.

A natural sample counterpart of the objective function in (HB) would be minη∈C [π̂−η]′Ω[π̂−η],

where π̂ estimates π, for example by sample choice frequencies. The usual normalization by sample

size yields

JN : = N min
η∈C

[π̂ − η]′Ω[π̂ − η](4.1)

= N min
ν∈RH

+

[π̂ −Aν]′Ω[π̂ −Aν].

Once again, ν is not unique at the optimum, but η = Aν is. Call its optimal value η̂. Then η̂ = π̂,

and JN = 0, if the estimated choice probabilities π̂ are stochastically rationalizable; obviously, our

null hypothesis will be accepted in this case.

4.2. Simulating a Critical Value. We next explain how to get a valid critical value for JN under

the assumption that π̂ estimates the probabilities of patches by corresponding sample frequencies and
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that one has R bootstrap replications π̂∗(r), r = 1, ..., R. Thus, π̂∗(r)− π̂ is a natural bootstrap analog

of π̂ − π. We will make enough assumption to ensure that its distribution consistently estimates the

distribution of π̂ − π0, where π0 is the true value of π. The main difficulty is that one cannot use π̂

as bootstrap analog of π0.

Our bootstrap procedure relies on a tuning parameter τN chosen s.t. τN ↓ 0 and
√
NτN ↑ ∞.10

Also, let Ω be diagonal and positive definite and let 1H be a H-vector of ones.11. Then our procedure

is as follows:

(i) Obtain the τN -tightened restricted estimator η̂τn , which solves

JN = min
[ν−τN1H/H]∈RH

+

N [π̂ −Aν]′Ω[π̂ −Aν]

(ii) Define the τN -tightened recentered bootstrap estimators

π̂∗(r)τN
:= π̂∗(r) − π̂ + η̂τN , r = 1, ..., R.

(iii) The bootstrap test statistic is

J
∗(r)
N (τN ) = min

[ν−τN1H/H]∈RH
+

N [π̂∗(r)τN
−Aν]′Ω[π̂∗(r)τN

−Aν],

for r = 1, ..., R.

(iv) Use the empirical distribution of J
∗(r)
N (τN ), r = 1, ..., R to obtain the critical value for JN .

The object η̂τN is the true value of π in the bootstrap population, i.e. it is the bootstrap analog

of π0. It differs from π̂ through a “double recentering.” To disentangle the two recenterings, suppose

first that τN = 0. Then inspection of step (i) of the algorithm shows that π̂ would be projected onto

the cone C. This is a relatively standard recentering “onto the null” that resembles recentering of the

J-statistic in overidentified GMM. However, with τN > 0, there is a second recentering because the

cone C itself has been tightened. We next discuss why this recentering is needed.

10In a simplified procedure in which the unrestricted choice probability estimate is obtained by simple sample fre-

quencies, one reasonable choice would be

τN =

√
logN

N

where N = minj Nj and Nj is the number of observations on Budget Bj : see (4.7). This choice corresponds to the “BIC

choice” in Andrews and Soares (2010). We will later propose a different τN based on how π is in fact estimated.
11In principle, 1H could be any strictly positive H-vector, though a data based choice of such a vector is beyond the

scope of the paper.
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4.3. Discussion. Our testing problem is related to the large literature on inequality testing but adds

an important twist. Writing {a1, a2, ..., aH} for the column vectors of A, one has

C = cone(A) := {ν1a1 + ...+ νHaH : νh ≥ 0},

i.e. the set C is a finitely generated cone. The following result, known as the Weyl-Minkowski

Theorem, provides an alternative representation that is useful for theoretical developments of our

statistical testing procedure.

Theorem 4.1. (Weyl-Minkowski Theorem for Cones) A subset C of RI is a finitely generated cone

(4.2) C = {ν1a1 + ...+ νHaH : νh ≥ 0} for some A = [a1, ..., aH ] ∈ RI×H

if and only if it is a finite intersection of closed half spaces

(4.3) C = {t ∈ RI |Bt ≤ 0} for some B ∈ Rm×I .

The expressions in (4.2) and (4.3) are called a V-representation (as in “vertices”) and a H-representation

(as in “half spaces”) of C, respectively.

See, for example, Theorem 1.3 in Ziegler (1995).12 The “only if” part of the theorem (which

is Weyl’s Theorem) shows that our rationality hypothesis π ∈ C, C = {Aν|ν ≥ 0} in terms of a

V-representation can be re-formulated in an H-representation using an appropriate matrix B, at least

in theory. If such B were computationally feasible, our testing problem would resemble tests of

H0 : Bθ ≥ 0 B ∈ Rp×q is known.

based on test statistics of form

TN := min
η∈Rq

+

N [Bθ̂ − η]′S−1[Bθ̂ − η].

This type of problem has been studied extensively; see references in Section 2. Its analysis is intricate

because the limiting distribution of TN depends discontinuously on the true value of Bθ. One com-

mon way to get a critical value is to consider the globally least favorable case, which is θ = 0. A less

conservative strategy widely followed in the econometric literature on moment inequalities is ”Gener-

alized Moment Selection” (GMS; see Andrews and Soares (2010), Bugni (2010), Canay (2010)). If we

had the H-representation of C, we might conceivably use the same technique. However, the duality

12See Gruber (2007), Grünbaum, Kaibel, Klee, and Ziegler (2003) and Ziegler (1995) for these results and other

materials concerning convex polytopes used in this paper.
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between the two representations is purely theoretical: In practice, B cannot be computed from A in

high-dimensional cases like ours.

We therefore propose a tightening of the cone C that is computationally feasible and will have

a similar effect as GMS. The idea is to tighten the constraint on ν in (4.1). In particular, define

CτN := {Aν|ν ≥ τN1H/H} and define η̂τN as optimal argument in

JN (τN ) : = min
η∈CτN

N [π̂ − η]′Ω[π̂ − η](4.4)

= min
[ν−τN1H/H]∈RH

+

N [π̂ −Aν]′Ω[π̂ −Aν].

Our proof establishes that constraints in the H-representation that are almost binding at the original

problem’s solution (i.e., their slack is difficult to be distinguished from zero at the sample size) will be

binding with zero slack after tightening. Suppose that
√
N(π̂ − π)→d N(0, S) and let Ŝ consistently

estimate S. Let η̃τN := η̂τN + 1√
N
N(0, Ŝ) or a bootstrap random variable and use the distribution of

J̃N (τN ) : = min
η∈CτN

N [η̃τN − η]′Ω[η̃τN − η](4.5)

= min
[ν−τN1H/H]∈RH

+

N [η̃τN −Aν]′Ω[η̃τN −Aν],

to approximate the distribution of JN . This has the same theoretical justification as the inequality

selection procedure. Unlike the latter, however, it avoids the use of an H-representation, thus offering

a computationally feasible testing procedure.

Revisiting Example 3.1. With two intersecting budget planes, one can verify that the cone

C is represented by

(4.6) B =



−1 0 0 0

0 0 −1 0

−1 −1 1 1

1 1 −1 −1

1 0 0 −1


and then use a standard moment inequalities method, such as GMS, on this. This is the essence of

inference in Hoderlein and Stoye (2014). Computation of B is not feasible in high dimensions, in

which case our tightening based approach is useful.

4.4. Theoretical Justification. We now provide a detailed justification. First, we formalize the

notion that choice probabilities are estimated by sample frequencies. Thus, for each budget set Bj ,
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denote the choices of Nj individuals, indexed by n = 1, ..., Nj , by

di|j,n =

 1 if individual n chooses xi|j

0 otherwise
n = 1, ..., NJ .

Assume that one observes J random samples {{di|j,n}Iji=1}
Nj
n=1, j = 1, 2, ..., J . For later use, define

dj,n :=


d1|j,n

...

dIj |j,n

 , N =

J∑
j=1

NJ .

An obvious way to estimate the vector π is to use choice frequencies

(4.7) π̂i|j =

Nj∑
n=1

di|j,n/Nj , i = 1, ..., Ij , j = 1, ..., J.

The next lemma, among other things, shows that our tightening of the V-representation of C is

equivalent to a tightening its H-representation but leaving B unchanged. For a matrix B, let col(B)

denote its column space.

Lemma 4.1. For A ∈ RI×H , define

C = {Aν|ν ≥ 0}.

and let

C = {t : Bt ≤ 0}

be its H-representation for some B ∈ Rm×I such that B =

B≤
B=

, where the submatrices B≤ ∈ Rm̄×I

and B= ∈ R(m−m̄)×I correspond to inequality and equality constraints, respectively. For τ > 0 define

Cτ = {Aν|ν ≥ (τ/H)1H}.

Then one also has

Cτ = {t : Bt ≤ −τφ}

for some φ = (φ1, ..., φm)′ ∈ col(B) with the properties that (i) φ̄ := [φ1, ..., φm̄]′ ∈ Rm̄
++, and (ii)

φk = 0 for k > m̄.

Lemma 4.1 is not just a re-statement of the Minkowski-Weyl theorem for polyhedra, which

would simply say Cτ = {Aν|ν ≥ (τ/H)1H} is alternatively represented as an intersection of closed

halfspaces. The lemma instead shows that the inequalities in the H-representation becomes tighter by
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τφ after tightening the V-representation by τN1H/H, with the same matrix of coefficients B appearing

both for C and Cτ . Note that for notational convenience, we rearrange rows of B so that the genuine

inequalities come first and pairs of inequalities that represent equality constraints come last.13 This

is w.l.o.g.; in particular, the researcher does not need to know which rows of B these are. Then as we

show in the proof, the elements in φ corresponding to the equality constraints are automotically zero

when we tighten the space for all the elements of ν in the V-representation. This is a useful feature

that makes our methodology work in the presence of equality constraints.

The following assumptions are used for our asymptotic theory.

Assumption 4.1. For all j = 1, ..., J ,
Nj
N → ρj as N →∞, where ρj > 0.

Let bk,i, k = 1, ...,m, i = 1, ..., I denote the (k, i) element of B, then define

bk(j) = [bk,N1+···Nj−1+1, bk,N1+···Nj−1+2, ..., bk,N1+···Nj ]
′

for 1 ≤ j ≤ J and 1 ≤ k ≤ m.

Assumption 4.2. J repeated cross-sections of random samples
{
{di|j,n(j)}Iji=1

}Nj
n(j)=1

, j = 1, ..., J ,

are observed.

The econometrician also observes the normalized price vector pj , which is fixed in this section, for

each 1 ≤ j ≤ J .

Next, we impose a mild condition that guarantees stable behavior of the statistic JN . To

this end, we further specify the nature of each row of B. Recall that w.l.o.g. the first m̄ rows of

B correspond to inequality constraints, whereas the rest of the rows represent equalities. Note that

the m̄ inequalities include nonnegativity constraints πi|j ≥ 0, 1 ≤ i ≤ Ij , 1 ≤ j ≤ J , represented by

the row of B consisting of a negative constant for the corresponding element and zeros otherwise.

Likewise, the identities that
∑Ij

i=1 πi|j is constant across 1 ≤ j ≤ J are included in the set of equality

constraints.14 We show in the proof that the presence of these “definitional” equalities/inequalities,

which always hold by construction of π̂, do not affect the asymptotic theory even when they are (close

to) be binding. Define K = {1, ...,m}, and let KD be the set of indices for the rows of B corresponding

to the above nonnegativity constraints and the constant-sum constraints. Let KR = K \ KD, so that

13In the matrix displayed in (4.6), the third and fourth row would then come last.
14If we impose the (redundant) restriction 1′Hν = 1 in the definition of C, then the corresponding equality restrictions

would be
∑Ij
i=1 πi|j = 1 for every j.
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b′kπ ≤ 0 represents an economic restriction if k ∈ KR.15 With these definitions, consider the following

requirement:

Condition 4.1. For each k ∈ KR, var(bk(j(k))′dj,n) ≥ ε holds for at least one j(k), 1 ≤ j(k) ≤ J ,

where ε is a positive constant.

Our uniform size control result stated below relies on a triangular array CLT. It is known that for

triangular array XiN , i = 1, ..., N ∼iid Bernoulli(pN ), N = 1, 2, ..., such a CLT obtains iff the Lyapunov

condition NpN (1− pN )→∞ holds. As long as one of the elements of π appearing in each of the k-th

restriction belongs to [ε, 1 − ε] for small ε > 0 for each k ∈ KR, then
∑J

j=1 bk(j)
′dj,n will satisfy the

Lyapunouv condition. Condition 4.1 guarantees this. Note that this does not require, for example, all

of the elements of π to be bounded away from zero. See the proof of Theorem 4.2 in Appendix A for

more on this point. Though this condition involves the matrix B, implementing our procedure does

not require knowing B. The condition is meant as restriction on the underlying d.g.p. Directly testing

Condition 4.1 using data seems to require the setting of the empirical problem to be of a sufficiently

small scale so that B can be computed.

Note that the distribution of observations is uniquely characterized by the vector π. Let P
denote the set of all π’s that satisfy Condition 4.1 for some (common) value of ε.

Theorem 4.2. Choose τN so that τN ↓ 0 and
√
NτN ↑ ∞. Also, let Ω be diagonal, where all the

diagonal elements are positive. Then under Assumptions 4.1 and 4.2

lim inf
N→∞

inf
π∈P∩C

Pr{JN ≤ ĉ1−α} = 1− α

where ĉ1−α is the 1− α quantile of J̃N (τN ), 0 ≤ α ≤ 1
2 .

While it is obvious that our tightening contracts the cone, the result depends on a more delicate

feature, namely that we (potentially) turn non-binding inequalities from the H-representation into

binding ones but not vice versa. This feature is not universal to cones as they get contracted. Our

proof establishes that it generally obtains if Ω is the identity matrix and all corners of the cone

are acute. In this paper’s application, we can further exploit the cone’s geometry to extend the

result to any diagonal Ω. Our method immediately applies to other testing problems featuring V-

representations if analogous features can be verified.

15In (4.6), KR contains only the last row of the matrix.
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We finally remark that in principle, a critical value for JN could be computed by regularization.

Let η̃αN := η̂ +
√

αN
N N(0, Ŝ), where αN is a sequence that goes to infinity slowly. Recall that η̂

is the projection of the choice frequency vector π̂ onto the cone C. The distribution of J̃N (αN ) :=

N
αN

minν∈RH
+

[η̃αN −Aν]′Ω[η̃αN −Aν] can be evaluated by simulation. It provides a valid approximation

of the distribution of JN asymptotically, regardless of the position of η0, the population analog of η̂,

on the cone C. This is basically the idea behind subsampling and the m-out-of-n bootstrap. It is

convenient computationally and does not rely on geomtric features of the cone. However, it is subject

to practitioners’ critiques of subsampling, e.g. sensitivity to choice of αN ; furthermore, Andrews and

Guggenberger (2009, 2010) forcefully argue that it can suffer from low power compared to inequality

selection methods to which our method is more similar.

5. Extending the Scope of the Test

The methodology outlined in Section 4 requires (i) the observations available to the econome-

trician are drawn on a finite number of budgets and (ii) the budgets are given exogenously, that is,

unobserved heterogeneity and budgets are assumed to be independent. These conditions are naturally

satisfied in some applications. The empirical setting in Section 6, however, calls for modifications

because Condition (i) is certainly violated in it and imposing Condition (ii) would be very restrictive.

We propose to use a series estimator to estimate the conditional choice probability vector π for a

specific expenditure W when W is distributed continuously (Section 5.1). Furthermore, a method

to test stochastic rationality in the presence of possible endogeneity of income is developed using a

control function method (Section 5.2).

The setting in this section is as follows. Let p̃j ∈ RK
++ denote the unnormalized price vector,

fixed for each period j. Let (S,S, P ) denote the underlying probability space. Since we have repeated

cross-sections over J periods, write P = ⊗Jj=1P
(j), a J-fold product measure. Let Pu denote the

marginal probability law of u, which we assume does not depend on j. We do not, however, assume

that the laws of other random elements, such as income, are time homogeneous. Let w = log(W )

denote log total expenditure, and the researcher chooses a value wj for w for each period j.

5.1. Test statistic with smoothing. This subsection proposes a smoothing procedure based on a

series estimator (see, for example, Newey (1997)) for π to deal with a situation where total expenditure

W is continuously distributed, yet exogenous. We need some notation and definitions to formally state

the asymptotic theory behind our procedure with smoothing.

Let wn(j) be the log total expenditure of consumer n(j), 1 ≤ n(j) ≤ Nj observed in period j.
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Assumption 5.1. J repeated cross-sections of random samples
{(
{di|j,n(j)}Iji=1, wn(j)

)}Nj
n(j)=1

, j =

1, ..., J , are observed.

The econometrician also observes the unnormalized price vector p̃j , which is fixed, for each 1 ≤ j ≤ J .

This sub-section assumes that the total expenditure is exogenous, in the sense that

w⊥⊥u

holds under every P (j), 1 ≤ j ≤ J . This will be relaxed in the next subsection. Define

pi|j(w) := Pr{di|j,n(j) = 1|wn(j) = w}.

We have

pi|j(wj) = Pr{di|j,n(j) = 1|wn(j) = wj}

= Pr{D(p̃j/wn(j), u) ∈ xi|j |wn(j) = wj}

= Pr{D(p̃j/wj , u) ∈ xi|j , u ∼ Pu}

where the third equality follows from the exogeneity assumption. Letting

πi|j = pi|j(wj)

and writing πj := (π1|j , ..., πIj |j)
′ and π := (π′1, ..., π

′
J)′ = (π1|1, π2|1, ..., πIJ |J)′, the stochastic rational-

ity condition is given by

π ∈ C

as before. Define qK(w) = (q1K(w), ..., qKK(w))′, where qjK(w), j = 1, ...,K are basis functions (e.g.

power series or splines) of w. Instead of sample frequency estimators, for each j, 1 ≤ j ≤ J we use

π̂i|j = qK(j)(wj)
′Q̂−(j)

Nj∑
n(j)=1

qK(j)(wn(j))di|j,n(j)/Nj ,

Q̂(j) =

Nj∑
n(j)=1

qK(j)(wn(j))q
K(j)(wn(j))

′/Nj

π̂j = (π̂1|j , ..., π̂Ij |j)
′,

π̂ = (π̂′1, ..., π̂
′
J)′,

to estimate πi|j , where A− denotes a symmetric generalized inverse of A and K(j) is the number of

basis functions applied to Budget Bj . The estimators π̂i|j ’s may not take their values in [0, 1]. This
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does not seem to cause a problem asymptotically, though as in Imbens and Newey (2009), we may

(and do, in the application) instead use

π̂i|j = G

qK(j)(wj)
′Q̂−(j)

Nj∑
n(j)=1

qK(j)(wn(j))di|j,n(j)/Nj

 ,

where G denotes the CDF of Unif(0, 1). The smoothed version of JN is obtained using the above

series estimator for π̂ in (4.1). Then an appropriate choice of τN is τN =
√

logn
n with

n = min
j
NjIj/trace(v

(j)
N )

where v
(j)
N is defined below. Strictly speaking, asymptotics with nonparametric smoothing involve

bias, and the bootstrap does not solve the problem. A standard procedure is to claim that one used

undersmoothing and can hence ignore the bias, and we follow this convention. The bootstrapped test

statistic J̃N (τN ) is obtained applying the same replacements to the formula (4.5), although generating

η̃τN requires a slight modification. Let η̂τN (j) be the j-th block of the vector η̂τN , and v̂
(j)
N satisfy

v̂
(j)
N v

(j)
N

−1
→p IIj , where

v
(j)
N = [IIj ⊗ qK(j)(wj)

′QN (j)−1]Λ
(j)
N [IIj ⊗Q−1

N (j)qK(j)(wj)]

with QN (j) := E[qK(j)(wn(j))q
K(j)(wn(j))

′
], Λ

(j)
N := E[Σ(j)(wn(j)) ⊗ qK(j)(wn(j))q

K(j)(wn(j))
′
], and

Σ(j)(w) := Cov[dj,n(j)|wn(j) = w]. Note that Σ(j)(w) = diag
(
p(j)(w)

)
−p(j)(w)p(j)(w)′ where p(j)(w) =

[p1|j(w), ..., pIj |j(w)]′. For example, one may use

v̂
(j)
N = [IIj ⊗ qK(j)(wj)

′Q̂−(j)]Λ̂(j)[IIj ⊗ Q̂−(j)qK(j)(wj)]

with Λ̂(j) = 1
Nj

∑Nj
n(j)=1

[
Σ̂(j)(wn(j))⊗ qK(j)(wn(j))q

K(j)(wn(j))
′]

, Σ̂(j)(w) = diag
(
p̂(j)(w)

)
−p̂(j)(w)p̂(j)(w)′,

p̂(j)(w) = [p̂1|j(w), ..., p̂Ij |j(w)]′ and p̂i|j(w) = qK(j)(w)′Q̂−(j)
∑Nj

n(j)=1 q
K(j)(wn(j))di|j,n(j)/Nj . We

use η̃τN = (η̃τN (1)′, ..., η̃τN (J)′)′ for the smoothed version of J̃N (τN ), where η̃τN (j) := η̂τN (j) +

1√
Nj
N(0, v̂

(j)
N ), j = 1, ..., J .

Let Wj denote the support of wn(j). For a symmetric matrix A, λmin signifies its smallest

eigenvalue.

Condition 5.1. There exist positive constants C, ε, δ, and ζ(K), K ∈ N such that the following

holds:

(i) π ∈ C;

(ii) For each k ∈ KR, var(bk(j(k))′dj,n|wn(j)) ≥ ε holds for at least one j(k), 1 ≤ j(k) ≤ J ;
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(iii) supw∈Wj
|pi|j(w) − qK(w)′β(j)

K | ≤ CK−δ holds with some K-vector β
(j)
K for every K ∈ N,

1 ≤ i ≤ Ij , 1 ≤ j ≤ J ;

(iv) Letting q̃K := CK,jq
K , λminE[q̃K(wn(j))q̃

K(wn(j))
′] ≥ C holds for every K and j, where

CK,j ,K ∈ N, 1 ≤ j ≤ J are constant nonsingular matrices;

(v) maxj supw∈Wj
‖q̃K(w)‖ ≤ Cζ(K) for every K ∈ N.

In what follows, Fj signifies the joint distribution of (di|j,n(j), wn(j)). Let F be the set of all

(F1, ..., FJ) that satisfy Condition 5.1 for some (C, ε, δ, ζ(·)).

Theorem 5.1. Choose τN and K(j), j = 1, ..., J so that
√
NjK

−δ(j) ↓ 0, ζ(K(j))2K(j)/Nj ↓ 0,

j = 1, ..., J , τN ↓ 0, and
√
nτN ↑ ∞. Also let Ω be diagonal where all the diagonal elements are

positive. Then under Assumptions 4.1 and 5.1

lim inf
N→∞

inf
(F1,...,FJ )∈F

Pr{JN ≤ ĉ1−α} = 1− α

where ĉ1−α is the 1− α quantile of J̃N (τN ), 0 ≤ α ≤ 1
2 .

5.2. Endogeneity. We now relax the assumption that consumer’s utility functions are realized inde-

pendently from W . Exogeneity of budget sets is a standard assumption in classical demand analysis

based on random utility models; for example, it is assumed, at least implicitly, in ??. Nonetheless,

the assumption can be a concern in applying our testing procedure to a data set such as ours. Recall

that the budget sets {Bj}Jj=1 are based on prices and total expenditure. The latter is likely to be

endogenous, and the econometrician should be concerned with its potential effect.

As independence between utility and budgets is fundamental to McFadden-Richter theory,

addressing it in our testing procedure might seem difficult. Fortunately, recent advances in nonpara-

metric identification and estimation of models with endogeneity inform a solution. To see this, it is

useful to rewrite the model so that we can cast it into a framework of nonseparable models with en-

dogenous covariates. Writing pj = p̃j/W , where p̃j is the unnormalized price vector, the essence of the

problem is as follows: Stochastic rationalizability imposes restrictions on the conditional distributions

of y = D(p, u) for different p when u is distributed according to its population marginal distribution

Pu, but the observed conditional distribution of y given p does not estimate this when w and u are

interrelated.

Well-known results for nonseparable models, such as Chesher (2003), are concerned with (point)

identification of the structural function D(·, ·) under the assumption that the unobserved heterogeneity

(u in our model) is a scalar and that the structural function D(·, ·) is monotone in u. In contrast, it is
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an important part of our contribution that we let the nuisance parameter u be infinite dimensional and

leave D(·, ·) completely unrestricted. Hence, we do not want to make such assumptions. Fortunately,

we do not need to: Imbens and Newey (2009) (see also Blundell and Powell (2003)) note that various

“average” counterfactual effects can be identified when u is not even finite dimensional using a control

function approach. The patch probabilities that we want to estimate are such average effects.

For each fixed value wj and the unnormalized price vector p̃j in period j, 1 ≤ j ≤ J , define the

endogeneity corrected conditional probability16

π(p̃j/e
wj , xi|j) := Pr{D(p̃j/e

wj , u) ∈ xi|j , u distributed according to Pu}

=

∫
1{Dj(wj , u) ∈ xi|j}dPu

where Dj(w, u) := D(p̃j/e
w, u). Then Proposition 3.2 still applies to

πEC := [π(p1, x1|1), ..., π(p1, xI1|1), π(p2, x1|2), ..., π(p2, xI2|2), ..., π(pJ , x1|J), ..., π(pJ , xIJ |J)]′.

If we define JEC = minν∈Rh
+

[πEC − Aν]′Ω[πEC − Aν], then its value is zero iff stochastic rationality

holds. Note that this new definition πEC recovers the definition of π in Sub-section 5.1 when w is

exogenous.

Suppose w is endogenous but there exists a control variable ε such that

w⊥⊥u|ε

holds under every P (j), 1 ≤ j ≤ J . For example, given a reduced form w = hj(z, ε) with hj monotone in

ε and z is an instrument, one may use ε = F
(j)
w|z(w|z) where F

(j)
w|z denotes the conditional CDF of w given

z under P (j) when the random vector (w, z) obeys the probability law P (j); see Imbens and Newey

(2009) for this type of control variable in the context of cross-sectional data. Note that ε ∼ Uni(0, 1)

under every P (j), 1 ≤ j ≤ J by construction. Let P
(j)
y|w,ε denote the conditional probability measure

for y given (w, ε) corresponding to P (j). Adapting the argument in Imbens and Newey (2009) and

Blundell and Powell (2003), under the assumption that supp(w) = supp(w|ε) under P (j), 1 ≤ j ≤ J

16This is the conditional choice probability if p is (counterfactually) assumed to be exogenous. We call it “endogeneity

corrected” instead of “counterfactual” because we use the term counterfactual when referring to rationality restricted

prediction.
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we have

π(pj , xi|j) =

∫ 1

0

∫
u

1{Dj(wj , u) ∈ xi|j}dP (j)
u|ε dε

=

∫ 1

0

∫
u

1{Dj(w, u) ∈ xi|j}dP (j)
u|w=wj ,ε

dε

=

∫ 1

0
P

(j)
y|w,ε

{
y ∈ xi|j |w = wj , ε

}
dε, 1 ≤ j ≤ J

where the second equality follows from w⊥⊥u|ε and the support condition. Note that P
(j)
y|w,ε

{
y ∈ xi|j |w = wj , ε

}
is observable.

Let zn(j) be the n(j)-th observation of the instrumental variable z in period j.

Assumption 5.2. J repeated cross-sections of random samples
{(
{di|j,n(j)}Iji=1, xn(j), zn(j)

)}Nj
n=1

, j =

1, ..., J , are observed.

The econometrician also observes the unnormalized price vector p̃j , which is fixed, for each 1 ≤ j ≤ J .

The last result shows that πEC can be estimated nonparametrically. More specifically, we can

proceed in two steps as follows. The first step is to obtain control variable estimates ε̂n(j), n(j) =

1, ..., Nj for each j. For example, let F̂
(j)
w|z be a nonparametric estimator for Fw|z for a given instru-

mental variable z in period j. For concreteness, we consider a series estimator as in Imbens and Newey

(2002). Let rL(z) = (r1L(z), ..., rLL(z)), where r`L(z), ` = 1, ..., L are basis functions, then define

F̂
(j)
w|z(w|z) = rL(z)′R̂−(j)

Nj∑
n(j)=1

rL(j)(zn(j))1{wn(j) ≤ w}/Nj

where

R̂(j) =

Nj∑
n(j)=1

rL(j)(zn(j))r
L(j)(zn(j))

′/Nj

Let

ε̃n(j) = F̂
(j)
w|z(wn(j)|zn(j)), n(j) = 1, ..., Nj .
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Choose a sequence υN → 0, υN > 0 and define ιN (ε) = (ε+ υN )2/4υN , then let

γN (ε) =



1 if ε > 1 + υN

1− ιN (1− ε) if 1− υN < ε ≤ 1 + υN

ε if υN ≤ ε ≤ 1− υN

ιN (ε) if − υN ≤ ε ≤ υN

0 if ε < −υN

then our control variable is ε̂n(j) = γN (ε̃n(j)), n(j) = 1, ..., Nj .

The second step is nonparametric estimation of P
(j)
y|w,ε

{
y ∈ xi|j |w = wj , ε

}
. Let χ̂n(j) = (wn(j), ε̂n(j))

′,

n(j) = 1, ..., Nj for each j. Write sM(j)(χ) = (s1M(j)(χ), ..., sM(j)M(j)(χ))′, where smM(j)(χ), χ ∈
RK+1,m = 1, ...,M(j) are basis functions, then our estimator for P

(j)
y|w,ε

{
y ∈ xi|j |w = ·, ε = ·

}
evalu-

ated at χ = (w, ε) is

P̂
(j)
y|w,ε

{
y ∈ xi|j |w, ε

}
= sM(j)(χ)′Ŝ−(j)

Nj∑
n(j)=1

sM(j)(χ̂n(j))di|j,n(j)/Nj

= sM(j)(χ)′α̂M(j)
i

where

Ŝ(j) =

Nj∑
n(j)=1

sM(j)(χ̂n(j))s
M(j)(χ̂n(j))

′/Nj , α̂
M(j)
i := Ŝ−(j)

Nj∑
n(j)=1

sM(j)(χ̂n(j))di|j,n(j)/Nj .

Our endogeneity corrected conditional probability π(pj , xi|j) is a linear functional of P
(j)
y|w,ε

{
y ∈ xi|j |w = wj , ε

}
,

thus plugging in P̂
(j)
y|w,ε

{
y ∈ xi|j |w = wj , ε

}
into the functional, we define

̂π(pj , xi|j) :=

∫ 1

0
P̂

(j)
y|w,ε

{
y ∈ xi|j |w = wj , ε

}
dε

= D(j)′α̂M(j)
i ,

where D(j) :=

∫ 1

0
sM(j)

wj
ε

 dε i = 1, ..., Ij , j = 1, ..., J

and

π̂EC = [ ̂π(p1, x1|1), ..., ̂π(p1, xI1|1), ̂π(p2, x1|2), ..., ̂π(p2, xI2|2), ..., ̂π(pJ , x1|J), ..., ̂π(pJ , xIJ |J)]′.
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The final form of the test statistic is

JECN = N min
ν∈Rh

+

[π̂EC −Aν]′Λ[π̂EC −Aν].

The calculation of critical values can be carried out in the same way as the testing procedure in Section

5.1, though the covariance matrix v
(j)
N needs modification. With the nonparametric endogeneity

correction, the modified version of v
(j)
N is

v̄
(j)
N = [IIj ⊗D(j)′SN (j)−1]Λ̄

(j)
N [IIj ⊗ SN (j)−1D(j)]

where

SN (j) = E[sM(j)(χn(j))s
M(j)(χn(j))

′
], Λ̄

(j)
N = Λ̄

(j)
1N

+ Λ̄
(j)
2N
,

Λ̄
(j)
1N

= E[Σ̄(j)(χn(j))⊗ sM(j)(χn(j))s
M(j)(χn(j))

′], Λ̄
(j)
2N

= E[mn(j)m
′
n(j)]

with

Σ̄(j)(χ) := Cov[dj,n(j)|χn(j) = χ],

mn(j) := [m′1,n(j),m
′
2,n(j), · · · ,m′Ij ,n(j)]

′,

mi,n(j) :=

E

[
γ̇N (εm(j))

∂

∂ε
P

(j)
y|w,ε

{
y ∈ xi|j |wm(j), εm(j)

}
sM(j)(χm(j))r

L(j)(zm(j))
′RN (j)−1rL(j)(zn(j))umn(j)

]
∣∣∣∣di|j,n(j), wn(j), zn(j)

]
,

RN (j) := E[rL(j)(zn(j))r
L(j)(zn(j))

′], umn(j) := 1{wn(j) ≤ wm(j)} − F (j)
w|z(wm(j)|zn(j)).

Define

nEC = min
j
NjIj/trace(v̄

(j)
N ),

then a possible choice for τN is τN =
√

lognEC
nEC

. Proceed as in Section 5.1, replacing v̂
(j)
N with a

consistent estimator for v̄
(j)
N for j = 1, ..., J , to define the bootstrap version J̃EC(τN ).

We impose some conditions to show the validity of the endogeneity-corrected test. Define

Xj = supp(χn(j)), and Zj = supp(zn(j)), 1 ≤ j ≤ J . Following the above discussion, define an

RI -valued functional

π(P
(1)
y|w,ε, ..., P

(J)
y|w,ε) = [π1|1(P

(1)
y|w,ε), ..., πI1|1(P

(1)
y|w,ε), π1|2(P

(2)
y|w,ε), ..., πI2|2(P

(2)
y|w,ε), ..., π1|J(P

(J)
y|w,ε), ..., πIJ |J(P

(J)
y|w,ε)]

′

where

πi|j(P
(j)
y|w,ε) :=

∫ 1

0
P

(j)
y|w,ε

{
y ∈ xi|j |w = wj , ε

}
dε
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and εn(j) := F
(j)
w|z(wn(j)|zn(j)) for every j.

Condition 5.2. There exist positive constants C, ε, δ1, δ, ζr(L), ζs(M), and ζ1(M), L ∈ N, M ∈ N

such that the following holds:

(i) The distribution of wn(j) conditional on zn(j) = z is continuous for every z ∈ Zj, 1 ≤ j ≤ J ;

(ii) supp(wn(j)|εn(j) = ε) = supp(wn(j)) for every ε ∈ [0, 1], 1 ≤ j ≤ J ;

(iii) π(P
(1)
y|w,ε, ..., P

(J)
y|w,ε) ∈ C;

(iv) For each k ∈ KR, var(bk(j(k))′dj,n|wn(j), εn(j)) ≥ ε holds for at least one j(k), 1 ≤ j(k) ≤ J ;

(v) Letting r̃L := CL,jr
L, λminE[r̃L(zn(j))r̃

L(zn(j))] ≥ C holds for every L and j, where CL,j , L ∈
N, 1 ≤ j ≤ J , are constant nonsingular matrices;

(vi) maxj supz∈Zj ‖r̃L(z)‖ ≤ Cζr(L) for every L ∈ N.

(vii) supw∈Wj ,z∈Zj |F
(j)
w|z(w, z)− rL(z)′α(j)

L (w)| ≤ CL−δ1 , 1 ≤ j ≤ J holds with some L-vector α
(j)
L (·)

for every L ∈ N, 1 ≤ j ≤ J ;

(viii) Letting s̃M := C̄M,js
M , λminE[s̃M (χn(j))s̃

M (χn(j))] ≥ C holds for every M and j, where

C̄M,j ,M ∈ N, 1 ≤ j ≤ J , are constant nonsingular matrices;

(ix) maxj supχ∈Xj ‖s̃M (χ)‖ ≤ Cζs(M) and maxj supχ∈Xj ‖∂s̃M (χ)/∂ε‖ ≤ Cζ1(M) and ζs(M) ≤
Cζ1(M) for every M ∈ N;

(x) supχ∈Xj

∣∣∣P (j)
y|w,ε{y ∈ xi|j |w, ε} − sM (χ)′g(i,j)

M

∣∣∣ ≤ CM−δ, holds with some M -vector g
(i,j)
M for ev-

ery M ∈ N, 1 ≤ i ≤ Ij , 1 ≤ j ≤ J ;

(xi) P
(j)
y|w,ε{y ∈ xi|j |w, ε}, 1 ≤ i ≤ Ij , 1 ≤ j ≤ J , are twice continuously differentiable in χ = (w, ε).

Moreover, max1≤j≤J max1≤i≤Ij supχ∈χj

∥∥∥ ∂
∂χP

(j)
y|w,ε

{
y ∈ xi|j |w, ε

}∥∥∥ ≤ C and

max1≤j≤J max1≤i≤Ij supχ∈χj

∥∥∥ ∂2

∂χ∂χ′P
(j)
y|w,ε

{
y ∈ xi|j |w, ε

}∥∥∥ ≤ C.

In what follows, Fj signifies the joint distribution of (di|j,n(j), wn(j), zn(j)). Let FEC be the set

of all (F1, ..., FJ) that satisfy Condition 5.2 for some (C, ε, δ1, δ, ζr(·), ζs(·), ζ1(·)). Then we have:

Theorem 5.2. Choose τN , M(j) and L(j), j = 1, ..., J so that τN ↓ 0,
√
nECτN ↑ ∞, NjL(j)1−2δ1 ↓ 0,

NjM(j)−2δ ↓ 0, M(j)ζ1(M(j))2L2(j)/Nj ↓ 0, ζs(M(j))6L4(j)/Nj ↓ 0, and ζ1(M(j))4ζr(L(j))4/Nj ↓ 0

and also C(L(j)/Nj + L(j)1−2δ1) ≤ υ3
N ≤ C(L(j)/Nj + L(j)1−2δ1) holds for some 0 < C < C. Also

let Ω be diagonal where all the diagonal elements are positive. Then under Assumptions 4.1 and 5.2

lim inf
N→∞

inf
(F1,...,FJ )∈FEC

Pr{JECN ≤ ĉ1−α} = 1− α

where ĉ1−α is the 1− α quantile of J̃ECN (τN ), 0 ≤ α ≤ 1
2 .
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6. Empirical Application

We apply our methods to data from the U.K. Family Expenditure Survey, the same data used

by BBC and others. Our testing of a RUM can, therefore, be compared with their revealed preference

analysis of a representative consumer. To facilitate comparison of results, we use the exact same

selection from these data as they do, namely the time periods from 1975 through 1999 and households

with a car and at least one child. The number of data points used varies from 715 (in 1997) to 1509

(in 1975), for a total of 26341. For each year, we extract the budget corresponding to that year’s

median expenditure and estimate the distribution of demand on that budget by the method outlined

in section 5.1 using polynomials of order 3. Like BBC, we assume that all consumers in one year face

the same prices, and we use the same price data. While budgets have a tendency to move outward

over time, we find that there is substantial overlap of budgets at median expenditure. To account for

endogenous expenditure, we use tools from section 5.2 with total household income as instrument.

This is also the same instrument used in BBC (2008).

We present results for blocks of eight consecutive periods and the same three composite goods

(food, nondurable consumption goods, and services) considered in BBC. For all blocks of seven con-

secutive years, we analyze the same basket but also increase the dimensionality of commodity space to

4 or even 5. This is done by first splitting nondurables into clothing and other nondurables and then

further into clothing, alcoholic beverages, and other nondurables. Thus, the separability assumptions

that we (and others) implicitly invoke are successively relaxed. We are able to go further than much

of the existing literature in this regard because, while computational expense increases with K,17 our

approach is not subject to a statistical curse of dimensionality,

Regarding the test’s statistical power, increasing the dimensionality of commodity space can

cut both ways. The number of rationality constraints that we test goes up, which helps if some of

the new constraints are violated but adds noise otherwise. Also, the maintained assumptions become

weaker: In principle, a rejection of stochastic rationalizability at 3 but not 4 goods might just indicate

a failure of separability. In practice, we fail to reject stochastic rationalizability for any combination

of time periods and number of goods.

17Tables 1 and 2 were computed in a few days on Cornells ECCO cluster (32 nodes). An individual cell of a table

can be computed in reasonable time on any desktop computer. Computation of a matrix A took up to one hour and

computation of one JN about five seconds on a laptop.
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3 goods 4 goods 5 goods

I H JN p I H JN p I H JN p

75-81 36 6409 3.67 .38 52 39957 5.43 .29 55 53816 4.75 .24

76-82 39 4209 11.6 .14 65 82507 5.75 .39 65 82507 5.34 .31

77-83 41 7137 9.81 .17 65 100728 6.07 .39 68 133746 4.66 .38

78-84 32 3358 7.38 .24 62 85888 2.14 .70 67 116348 1.45 .71

79-85 35 5628 .114 .96 71 202686 .326 .92 79 313440 .219 .94

80-86 38 7104 .0055 .998 58 68738 1.70 .81 66 123462 7.91 .21

81-87 26 713 .0007 .998 42 9621 .640 .89 52 28089 6.33 .27

82-88 15 42 0 1 21 177 .298 .60 31 1283 9.38 .14

83-89 13 14 0 1 15 31 .263 .49 15 31 9.72 .13

84-90 15 42 0 1 15 42 .251 .74 15 42 10.25 .24

85-91 15 63 .062 .77 19 195 3.59 .45 21 331 3.59 .44

86-92 24 413 1.92 .71 33 1859 7.27 .35 35 3739 9.46 .28

87-93 45 17880 1.33 .74 57 52316 6.60 .44 70 153388 6.32 .38

88-94 39 4153 1.44 .70 67 136823 6.95 .38 77 313289 6.91 .38

89-95 26 840 .042 .97 69 134323 4.89 .35 78 336467 5.84 .31

90-96 19 120 .040 .95 56 52036 4.42 .19 76 272233 3.55 .25

91-97 17 84 .039 .93 40 7379 3.32 .26 50 19000 3.27 .24

92-98 13 21 .041 .97 26 897 .060 .93 26 897 .011 .99

93-99 9 3 .037 .66 15 63 0 1 15 63 0 1

Table 1. Empirical results with 7 periods. I = number of patches, H = number of

rationalizable discrete demand vectors, JN = test statistic, p = p-value.

As a reminder, Figure 2 illustrates the application. The budget is the 1993 one as embedded

in the 1986-1993 block of periods, i.e. the Figure corresponds to a row of Table 2. All six budgets

from 1987 through 1992 intersect the 1993 one.

Tables 1 and 2 summarize our empirical findings. They display test statistics, p-values, and the

numbers I of patches and H of rationalizable demand vectors; thus, matrices A are of size (I ×H).

All entries that show JN = 0 and a corresponding p-value of 1 were verified to be true zeroes, i.e.

π̂EC is rationalizable. All in all, it turns out that estimated choice probabilities are typically not

stochastically rationalizable, but also that this rejection is not statistically significant.
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3 goods

I H JN p

75-82 51 71853 11.4 .17

76-83 64 114550 9.66 .24

77-84 52 57666 9.85 .20

78-85 49 76746 7.52 .26

79-86 55 112449 .114 .998

80-87 41 13206 3.58 .58

81-88 27 713 0 1

82-89 16 42 0 1

83-90 16 42 0 1

84-91 20 294 .072 .89

85-92 27 1239 2.24 .68

86-93 46 17880 1.54 .75

87-94 48 39913 1.55 .75

88-95 42 12459 1.68 .70

89-96 27 840 .047 .97

90-96 24 441 .389 .83

91-98 22 258 1.27 .52

92-99 14 21 .047 .96

Table 2. Empirical results with 8 periods. I = number of patches, H = number of

rationalizable discrete demand vectors, JN = test statistic, p = p-value.

Among many other validation exercises, we manually inspected data underlying the 84-91

entry in Table 2 because JN is rather low. The entry is not in error and illustrates an interesting

phenomenon. The matrix X (see footnote 7) corresponding to this entry contains the following three

rows: 
1 1 1 1 0 −1 −1 −1

1 1 1 −1 −1 −1 −1 0

1 1 1 1 −1 −1 −1 0


The corresponding entries of π̂ are (0.107, 0, 0.899). This violates the stochastic implications of WARP

(see Example 3.1) between budgets B5 and B8 because the estimated probabilities for the displayed
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patches add to more than 1. However, the violation is very small and not significant. This phenomenon

occurs frequently and may partly cause the many positive but insignificant values of JN . If two

budgets are slight rotations of each other and demand distributions change continuously in response,

then population probabilities for the relevant patches of these two budgets will sum to just less than

1. If these probabilities are estimated independently across budgets, the sample analog of the sum will

frequently (just) exceed 1. With 7 or 8 mutually intersecting budgets, there are many opportunities

for such reversals. The test statistic is then likely to be positive, but our bootstrap procedure accounts

for this.18

The phenomenon of estimated choice frequencies typically not being rationalizable means that

there is need for a statistical testing theory and also a theory of rationality constrained estimation.

The former is this paper’s main contribution. We leave the latter for future research.

7. Further Applications and Extensions

7.1. Partial Identification of Counterfactual Choices. The toolkit developed in this paper is

also useful for counterfactual analysis. For exposition, abstract from estimation issues and take a

rationalizable π to be known. Then to bound the value of any function f(ν) subject to the constraint

that ν rationalizes π, solve the program

min
ν∈RH

+

/ max
ν∈RH

+

f(ν) s.t. Aν = π.

Empirically, one will have to replave π with η̂ to ensure feasibility of the program; of course, η̂ = π̂

whenever π̂ is rationalizable.

Some interesting applications emerge by restricting attention to linear functions f(ν) = e′ν,

in which case the bounds are furthermore relatively easy to compute. We briefly discuss bounding

demand under a counterfactual budget, e.g. in order to measure the impact of policy intervention.

This is close in spirit to bounds reported by BBC 2008, Adams (2016), Manski (2007, 2014), and

others.

18We also checked whether small but positive test statistics are caused by adding-up constraints, i.e. by the fact

that all components of π̂ that correspond to one budget must add to the same sum across budgets. The estimator π̂

can slightly violate this because we force it to be inside [0, 1]I . Adding-up failures occur but are at least one order of

magnitude smaller than the distance from a typical π̂ to the corresponding projection η̂.
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In the remainder of this this subsection only, assume that demand on budget BJ is not observed

but is to be bounded. Write

A =

 A−J

AJ

 , π =

 π−J

πJ

 , πJ =


π1|J

...

πIJ |J


and let ei be the i-th unit vector. We begin by bounding components of πJ . This is not of immediate

interest in this paper’s empirical application, but will be if the true choice universe is discrete.

Corollary 7.1. πi|J is bounded by

πi|J ≤ πi|J ≤ πi|J

where

πi|J = min
{
e′iAJν

}
s.t. A−Jν = π−J , ν ≥ 0

πi|J = max
{
e′iAJν

}
s.t. A−Jν = π−J , ν ≥ 0.

Next, let δ(J) = E[arg maxy∈BJ u(y)], thus the vector δ(J) with typical component δk(J)

denotes expected demand in choice problem BJ . Define the vectors

dk(J) : = [dk(1|J), ..., dk(IJ |J)]

dk(J) : = [dk(1|J), ..., dk(IJ |J)]

with components

dk(i|J) : = min{yk : y ∈ xi|J}, 1 ≤ i ≤ IJ

dk(i|J) : = max{yk : y ∈ xi|J}, 1 ≤ i ≤ IJ ,

thus these vectors list minimal respectively maximal consumption of good k on the different patches

within BJ . Computing (dk(i|J), dk(i|J)) is a linear programming exercise. Then we have:

Corollary 7.2. Expected demand for good k on budget BJ is bounded by

δk(J) ≤ δk(J) ≤ δk(J),

where

δk(J) : = min{dk(J)AJν} s.t. A−Jν = π−J , ν ≥ 0

δk(J) : = max{dk(J)AJν} s.t. A−Jν = π−J , ν ≥ 0.
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Finally, consider bounding the c.d.f. Fk(z) = Pr(yk ≤ z). This quantity must be bounded in

two steps. The event (yk ≤ z) will in general not correspond to a precise set of patches, that is, it is

not measurable with respect to (the algebra generated by) X . An upper bound on Fk(z) will derive

from an upper bound on the joint probability of all patches xi|J s.t. yk ≤ z holds for some y ∈ xi|J .

Similarly, a lower bound will derive from bounding the joint probability of all patches xi|J s.t. yk ≤ z
holds for all y ∈ xi|J .19 We thus have:

Corollary 7.3. For k = 1, ...,K and z ≥ 0, Fk(z) is bounded from below by

min
ν∈RH

+

{
∑

i∈{1,...,IJ}:
dk(i|J)≤z

e′iAJν} s.t. A−Jν = π−J

and from above by

max
ν∈RH

+

{
∑

i∈{1,...,IJ}:
dk(i|J)≤z

e′iAJν} s.t. A−Jν = π−J ,

where
(
dk(i|J), dk(i|J)

)
are defined as before.

While both the lower and the upper bound will be proper c.d.f.’s, they are not in general

feasible distributions of demand for yk. That is, the bounds are sharp pointwise but not uniformly.

Also, bounds on a wide range of parameters such as the variance of demand follow from the above

bounds on the c.d.f. through results in Stoye (2010). However, because the bounds on the c.d.f. are

not uniform, these derived bounds will be valid but not necessarily sharp.20 In his recent analysis of

optimal taxation of labor, Manski (2014) solves programs like this to find informative bounds.

7.2. More General Choice Problems. The methods developed in this paper, including the exten-

sion to counterfactual choice, immediately apply whenever the universal choice space is finite or can be

made finite by an argument similar to Proposition 3.1. We already mentioned Deb, Kitamura, Quah,

and Stoye (2016) as an example of the latter. To further illustrate the point, we briefly elaborate on a

setting that has received some attention by theorists, namely random choice from binary sets. Thus,

choice probabilities for pairs of options,

πab := Pr(a is chosen from {a, b})
19These definitions correspond to inner and outer measure, as well as to hitting and containment probability.
20An adaptation of this paper’s inference method is in progress. Adaptation of inference procedures in Bugni, Canay,

and Shi (2016) and Kaido, Molinari, and Stoye (2016) could be interesting as well, but both would have to overcome the

absence of a H-representation of C.
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are observed for pairs of choice objects {a, b} drawn from some finite, universal set A.

Finding abstract conditions under which a set of choice probabilities {πab : a, b ∈ A} is ratio-

nalizable has been the objective of two disjoint literatures, one in economics and one in operations

research. See Fishburn (1992) for a survey of these literatures and Manski (2007) for a recent dis-

cussion of the substantive problem. There exists a plethora of necessary conditions, most famously

Marschak’s (1960) triangle condition, which can be written as

πab + πbc + πca ≤ 2, ∀a, b, c ∈ A.

If choice probabilities for all pairs are observed, then this condition is also sufficient for rationalizability

if A contains at most 5 elements (Dridi (1980)). Conditions that are both necessary and sufficient

in general have proved elusive. We do not discover abstract such conditions either, but our toolkit

allows to numerically resolve the question in complicated cases and also to perform a statistical test

that applies whenever probabilities are estimated. To see this, let J ≤ (#A)(#A − 1)/2 “budgets”

be the number of distinct pairs a, b ∈ A for whom πab is observed, and let the vector X (of length

I = 2J) stack these budgets, where the ordering of budgets is arbitrary and options within a budget

are ordered according to a preassigned ordering on A. Computation of A and all other steps then

work as before.

To illustrate, let A = {a, b, c} and assume that choice probabilities for all three pairs are

observable, then

π =



πab

πba

πbc

πcb

πca

πac


, A =



1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 1 0

0 1 1 0 0 1

0 1 0 1 0 1

1 0 1 0 1 0


,

and it is readily verified that Aν = π for some ν ∈ ∆5 iff both πab+πbc+πca ≤ 2 and πcb+πba+πac ≤ 2,

confirming sufficiency of the triangle condition.

8. Conclusion

This paper presented asymptotic theory and computational tools for nonparametric testing of

Random Utility Models. Again, the null to be tested was that data was generated by a RUM, inter-

preted as describing a heterogeneous population, where the only restrictions imposed on individuals’
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behavior were “more is better” and SARP. In particular, we allowed for unrestricted, unobserved

heterogeneity and stopped far short of assumptions that would recover invertibility of demand. As

a result, the distribution over utility functions in the population is left (very) underidentified. We

showed that testing the model is nonetheless possible. The method is easily adapted to choice prob-

lems that are discrete to begin with, and one can easily impose more, or also fewer, restrictions at the

individual level.

Possibilities for extensions and refinements abound, and some of these have already been ex-

plored. We close by mentioning further salient issues.

(1) We provide algorithms (and code) that work for reasonably sized problem, but it would be

extremely useful to make further improvements in this dimension.

(2) The extension to infinitely many budgets would be of obvious interest. Theoretically, it can be

handled by considering an appropriate discretization argument (McFadden 2005). For the proposed

projection-based econometric methodology, such an extension requires evaluating choice probabilities

locally over points in the space of p via nonparametric smoothing, then use the choice probability

estimators in the calculation of the JN statistic. The asymptotic theory then needs to be modified.

Another approach that can mitigate the computational constraint is to consider a partition of the

space of p such that RK
+ = P1 ∪ P2 · · · ∪ PM . Suppose we calculate the JN statistic for each of these

partitions. Given the resulting M statistics, say J1
N , · · · , JMN , we can consider Jmax

N := max1≤m≤M JmN

or a weighted average of them. These extensions and their formal statistical analysis are of practical

interest.

(3) It might frequently be desirable to control for observable covariates to guarantee the homogeneity

of the distribution of unobserved heterogeneity. This requires incorporating nonparametric smoothing

in estimating choice probabilities as in Section 5.1, then averaging the corresponding JN statistics over

the covariates. This extension will be pursued.

(4) The econometric techniques outlined here can be potentially useful in much broader contexts.

Again, our proposed hypothesis test can be regarded as specification test for a moment inequali-

ties model. The proposed statistic JN is an inequality analogue of goodness-of-fit statistics such as

Hansen’s (1982) overidentifying restrictions test statistic. Existing proposals for specification test-

ing in moment inequality models (Andrews and Guggenberger (2009), Andrews and Soares (2010),

Bugni, Canay, and Shi (2015), Romano and Shaikh (2010)) use a similar test statistic but work with
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H-representations. In settings in which theoretical restrictions inform a V-representation of a cone,

the H-representation will typically not be available in practice. We expect that our method can be

used in many such cases.

9. Appendix A: Proofs

Proof of Proposition 3.1. Call two demand vectors (d1, ..., dJ) and (d′1, ..., d
′
J) equivalent if they

select from the same patches, i.e. dj ∈ xi ⇔ d′j ∈ xi. Then for all j and k, p′jdj ≥ p′jdk ⇔ p′jd
′
j ≥ p′jd′k.

Thus, either both or none of any two equivalent vectors are rationalizable. Next, if (P1, ..., PJ) is

rationalizable, then there exists a distribution Pd that rationalizes it; see Remark 3.2. Let P ∗d be

the distribution induced by drawing d from Pd and replacing it with the equivalent d∗ that only

contains elements of Y∗. (By construction of Y∗, this d∗ exists and is unique.) Then P ∗d stochastically

rationalizes (P ∗1 , ..., P
∗
J ). The converse reasoning holds true as well. This establishes the special case;

the general case follows by applying the special case twice. �

Proof of Proposition 3.2. By Proposition 3.1, (P1, ..., PJ) is rationalizable iff (P ∗1 , ..., P
∗
J ) is. By

remark 3.2, (P ∗1 , ..., P
∗
J ) is rationalizable iff it is induced by a distribution Pd. Because (P ∗1 , ..., P

∗
J ) is

concentrated on Y∗, any d in the support of Pd has to be concentrated on Y∗ as well.

By Remark 3.4, the number H of distinct nonstochastic demand systems d∗ concentrated on

Y∗ is finite. Endow them with an arbitrary but henceforth fixed ordering. Then Pd can be identified

with a vector ν ∈ ∆H−1.

Consider now P ∗j (D(pj , u) = y∗i ). Any given d∗ either picks y∗i from Bj or not; the corresponding

component of its vector representation is an indicator of this event. Therefore, P ∗j (D(pj , u) = y∗i ) is

the inner product of ν with the vector that lists all these components in corresponding order. Applying

this reasoning to each component of the vector representation of (B1, ...,BJ), one sees that π = Aν,

where A collects the vector representations of rationalizable demand systems d∗ in that same order. �

Proof of Proposition 3.3. We begin with some preliminary observations. Throughout this proof,

c(Bi) denotes the object actually chosen from budget Bi.
(i) If there is a choice cycle of any finite length, then there is a cycle of length 2 or 3 (where

a cycle of length 2 is a WARP violation). To see this, assume there exists a length N choice cycle

c(Bi) � c(Bj) � c(Bk) � ... � c(Bi). If c(Bk) � c(Bi), then a length 3 cycle has been discovered. Else,

there exists a length N − 1 choice cycle c(Bi) � c(Bk) � ... � c(Bi). The argument can be iterated

until N = 4.
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(ii) Call a length 3 choice cycle irreducible if it does not contain a length 2 cycle. Then a choice

pattern is rationalizable iff it contains no length 2 cycles and also no irreducible length 3 cycles. (In

particular, one can ignore reducible length 3 cycles.) This follows trivially from (i).

(iii) Let J = 3 and M = 1, i.e. assume there are three budgets but two of them fail to

intersect. Then any length 3 cycle is reducible. To see this, assume w.l.o.g. that B1 is below B3,

thus c(B3) � c(B1) by monotonicity. If there is a choice cycle, we must have c(B1) � c(B2) � c(B3).

c(B1) � c(B2) implies that c(B2) is below B1, thus it is below B3. c(B2) � c(B3) implies that c(B3) is

below B2. Thus,choice from (B2,B3) violates WARP.

We are now ready to prove the main result. The nontrivial direction is “only if,” thus it suffices

to show the following: If choice from (B1, ...,BJ−1) is rationalizable but choice from (B1, ...,BJ) is not,

then choice from (BM+1, ...,BJ) cannot be rationalizable. By observation (ii), if (B1, ...,BJ) is not

rationalizable, it contains either a 2-cycle or an irreducible 3-cycle. Because choice from all triplets

within (B1, ...,BJ−1) is rationalizable by assumption, it is either the case that some (Bi,BJ) constitutes

a 2-cycle or that some triplet (Bi,Bk,BJ), where i < k w.l.o.g., reveals an irreducible choice cycle.

In the former case, Bi must intersect BJ , hence i > M , hence the conclusion. In the latter case, if

k ≤M , the choice cycle must be a 2-cycle in (Bi,Bk), contradicting rationalizability of (B1, ...,BJ−1).

If i ≤M , the choice cycle is reducible by (iii). Thus, i > M , hence the conclusion. �

Proof of Lemma 4.1. Letting ντ = ν − (τ/H)1H in Cτ = {Aν|ν ≥ (τ/H)1H} we have

Cτ = {A[ντ + (τ/H)1H ]|ντ ≥ 0}

= C ⊕ (τ/H)A1H

= {t : t− (τ/H)A1H ∈ C}

where ⊕ signifies Minkowski sum. Define

φ = −BA1H/H.

Using the H-representation of C,

Cτ = {t : B(t− (τ/H)A1H) ≤ 0}

= {t : Bt ≤ −τφ}.
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Note that the above definition of φ implies φ ∈ col(B). Also define

Φ := −BA

= −


b′1
...

b′m

 [a1, · · · , aH ]

= {Φkh}

where Φkh = b′kah, 1 ≤ k ≤ m, 1 ≤ h ≤ H and let eh be the h-th standard unit vector in RH . Since

eh ≥ 0, the V-representation of C implies that Aeh ∈ C, and thus

BAeh ≤ 0

by its H-representation. Therefore

(9.1) Φkh = −e′kBAeh ≥ 0, 1 ≤ k ≤ m, 1 ≤ h ≤ H.

But if k ≤ m̄, it cannot be that

aj ∈ {x : b′kx = 0} for all j

whereas

b′kah = 0

holds for m̄ + 1 ≤ k ≤ m, 1 ≤ h ≤ H. Therefore if k ≤ m̄, Φkh = b′kah is nonzero at least for one

h, 1 ≤ h ≤ H, whereas if k > m̄, Φkh = 0 for every h. Since (9.1) implies that all of {Φkh}Hh=1 are

non-negative, we conclude that

φk =
1

H

H∑
h=1

Φkh > 0

for every k ≤ m̄ and φk = 0 for every k > m̄. We now have

Cτ = {t : Bt ≤ −τφ}

where φ satisfies the stated properties (i) and (ii). �

Proof of Theorem 4.2. By applying the Minkowski-Weyl theorem and Lemma 4.1 to JN and J̃N (τN ),

we see that our procedure is equivalent to comparing

JN = min
t∈RI :Bt≤0

N [π̂ − t]′Ω[π̂ − t]
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to the 1− α quantile of the distribution of

J̃N (τN ) = min
t∈RI :Bt≤−τNφ

N [η̃τN − t]′Ω[η̃τN − t]

with φ = [φ̄′, (0, ..., 0)′]′, φ̄ ∈ Rm̄
++, where

η̃τN = η̂τN +
1√
N
N(0, Ŝ),

η̂τN = argmin
t∈RI :Bt≤−τNφ

N [π̂ − t]′Ω[π̂ − t].

Suppose B has m rows and rank(B) = `. Define an `×m matrix K such that KB is a matrix whose

rows consist of a basis of the row space row(B). Also let M be an (I − `)× I matrix whose rows form

an orthonormal basis of kerB = ker(KB), and define P =
(
KB
M

)
. Finally, let ĝ = Bπ̂ and ĥ = Mπ̂.

Then

JN = min
Bt≤0

N

[(
KB

M

)
(π̂ − t)

]′
P−1′ΩP−1

[(
KB

M

)
(π̂ − t)

]
= min

Bt≤0
N

(
K[ĝ −Bt]
ĥ−Mt

)′
P−1′ΩP−1

(
K[ĝ −Bt]
ĥ−Mt

)
.

Let

U1 =

{(
Kγ

h

)
: γ = Bt, h = Mt,B≤t ≤ 0, B=t = 0, t ∈ RI

}
then writing α = KBt and h = Mt,

JN = min
(αh)∈U1

N

(
Kĝ − α
ĥ− h

)′
P−1′ΩP−1

(
Kĝ − α
ĥ− h

)
.

Also define

U2 =

{(
Kγ

h

)
: γ =

(
γ≤

γ=

)
, γ≤ ∈ Rm̄

+ , γ
= = 0, γ ∈ col(B), h ∈ RI−`

}
where col(B) denotes the column space of B. Obviously U1 ⊂ U2. Moreover, U2 ⊂ U1 holds. To see

this, let
(
Kγ∗

h∗

)
be an arbitrary element of U2. We can always find t∗ ∈ RI such that γ∗ = Bt∗. Define

t∗∗ := t∗ +M ′h∗ −M ′Mt∗

then Bt∗∗ = Bt∗ = γ∗, therefore B≤t∗∗ ≤ 0 and B=t∗∗ = 0. Also, Mt∗∗ = Mt∗+MM ′h∗−MM ′Mt∗ =

h∗, therefore
(
Kγ∗

h∗

)
is an element of U1 as well. Consequently,

U1 = U2.
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We now have

JN = min
(αh)∈U2

N

(
Kĝ − α
ĥ− h

)′
P−1′ΩP−1

(
Kĝ − α
ĥ− h

)

= N min
(αy)∈U2

(
Kĝ − α

y

)′
P−1′ΩP−1

(
Kĝ − α

y

)
.

Define

T (x, y) =

(
x

y

)′
P−1′ΩP−1

(
x

y

)
, x ∈ R`, y ∈ RI−`,

and

t(x) := min
y∈RI−`

T (x, y), s(g) := min
γ=[γ≤′,γ=′]′,γ≤≤0,γ==0,γ∈col(B)

.

It is easy to see that t : R` → R+ is a positive definite quadratic form. We can write

JN = N min
γ=[γ≤′,γ=′]′,γ≤≤0,γ==0,γ∈col(B)

t(K[ĝ − γ])

= Ns(ĝ)

= s(
√
Nĝ).

We now show that tightening can turn non-binding inequality constraints into binding ones but not

vice versa. Note that, as will be seen below, this observation uses diagonality of Ω and the specific

geometry of the cone C. Let γ̂kτN , ĝk and φk denote the k-th elements of γ̂τN = Bη̂τN , ĝ and φ.

Moreover, define γτ (g) = [γ1(g), ..., γm(g)]′ = argminγ=[γ≤′,γ=′]′,γ≤≤−τφ̄,γ==0,γ∈col(B) t(K[g − γ]) for

g ∈ col(B), and let γkτ (g) be its k-th element. Then γ̂τN = γτN (ĝ). Finally, define βτ (g) = γτ (g) + τφ

for τ > 0 and let βkτ (g) denote its k-th element. Note γkτ (g) = φk = βkτ (g) = 0 for every k > m̄ and g.

Now we show that for each k ≤ m̄ and for some δ > 0,

βkτ (g) = 0

if |gk| ≤ τδ and gj ≤ τδ, 1 ≤ j ≤ m̄. In what follows we first show this for the case with Ω = II , where

II denotes the I-dimensional identity matrix, then generalize the result to the case where Ω can have

arbitrary positive diagonal elements.

For τ > 0 and δ > 0 define hyperplanes

Hτ
k = {x : b′kx = −τφk},

Hk = {x : b′kx = 0},

half spaces

Hτ
∠k(δ) = {x : b′kx ≤ τδ},
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and also

Sk(δ) = {x ∈ C : |b′kx| ≤ τδ}

for 1 ≤ k ≤ m. Define

L = ∩mk=m̄+1Hk,

a linear subspace of RI . In what follows we show that for small enough δ > 0, every element x∗ ∈ RI

such that

(9.2) x∗ ∈ S1(δ) ∩ · · · ∩ Sq(δ) ∩Hτ
∠q+1(δ) ∩ · · ·Hτ

∠m(δ) for some q ∈ {1, ..., m̄}

satisfies

(9.3) x∗|Cτ ∈ Hτ
1 ∩ · · · ∩Hτ

q ∩ L

where x∗|Cτ denotes the orthogonal projection of x∗ on Cτ . Let g∗k = b′kx
∗, k = 1, ...,m. Note that

an element x∗ fulfils (9.2) iff |g∗k| ≤ τδ, 1 ≤ k ≤ q and g∗j ≤ τδ, q + 1 ≤ j ≤ m̄. Likewise, (9.3) holds

iff βτk (g∗) = 0, 1 ≤ k ≤ q (recall βτk (g∗) = 0 always holds for k > m̄). Thus in order to establish the

desired property of the function βτ (·), we show that (9.2) implies (9.3). Suppose it does not hold;

then without loss of generality, for an element x∗ that satisfies (9.2) for an arbitrary small δ > 0, we

have

(9.4) x∗|Cτ ∈ Hτ
1 ∩ · · · ∩Hτ

r ∩ L and x∗|Cτ /∈ Hτ
j , r + 1 ≤ j ≤ q

for some 1 ≤ r ≤ q − 1. Define halfspaces

Hτ
∠k = {x : b′kx ≤ −τφk},

H∠k = {x : b′kx ≤ 0}

for 1 ≤ k ≤ m, τ > 0 and also let

F = H1 ∩ · · · ∩Hr ∩ L ∩ C,

then for (9.4) to hold for some x∗ ∈ RI satisfying (9.2) for an arbitrary small δ > 0 we must have

F | (Hτ
1 ∩ · · · ∩Hτ

r ∩ L) ⊂ int(Hτ
∠r+1 ∩ · · · ∩Hτ

∠q)

(Recall the notation | signifies orthogonal projection. Also note that if dim(F ) = 1, then (9.4) does

not occur under (9.2).) Therefore if we let

∆(J) = {x ∈ RI : 1′Ix = J, x ≥ 0},
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i.e. the simplex with vertices (J, 0, · · · , 0), · · · , (0, · · · , 0, J), we have

(9.5) (F ∩∆(J)) | (Hτ
1 ∩ · · · ∩Hτ

r ∩ L) ⊂ int(Hτ
∠r+1 ∩ · · · ∩Hτ

∠q).

Let {a1, ..., aH} = A denote the collection of the column vectors of A. Then {the vertices of F ∩
∆(J)} ∈ A. Let ā, ¯̄a ∈ F ∩∆(J). Let B(ε, x) denote the ε-(open) ball with center x ∈ RI . By (9.5),

B
(
ε,
(
ā| ∩rj=1 H

τ
j ∩ L

))
⊂ int(Hτ

∠r+1 ∩ · · · ∩Hτ
∠q) ∩H∠1 ∩ · · · ∩H∠r

holds for small enough ε > 0. Let āτ := ā+ τ , ¯̄aτ := ¯̄a+ τ , then

((
ā|(∩rj=1H

τ
j ) ∩ L

)
− ā
)′

(¯̄a− ā) =
((
ā|(∩rj=1H

τ
j ) ∩ L

)
− ā
)′

(¯̄aτ − āτ )

= 0

since āτ , ¯̄aτ ∈ (∩rj=1H
τ
j )∩L. We can then take z ∈ B

(
ε,
(
ā|(∩rj=1H

τ
j ) ∩ L

))
such that (z−ā)′(¯̄a−ā) <

0. By construction z ∈ C, which implies the existence of a triplet (a, ā, ¯̄a) of distinct elements in A
such that (a − ā)′(¯̄a − ā) < 0. In what follows we show that this cannot happen, then the desired

property of βτ is established.

So let us now show that

(9.6) (a1 − a0)′(a2 − a0) ≥ 0 for every triplet (a0, a1, a2) of distinct elements in A.

Noting that a′iaj just counts the number of budgets on which i and j agree, define

φ(ai, aj) = J − a′iaj ,

the number of disagreements. Importantly, note that φ(ai, aj) = φ(aj , ai) and that φ is a distance (it

is the taxicab distance between elements in A, which are all 0-1 vectors). Now

(a1 − a0)′(a2 − a0)

= a′1a2 − a′0a2 − a′1a0 + a′0a0

= J − φ(a1, a2)− (J − φ(a0, a2))− (J − φ(a0, a1)) + J

= φ(a0, a2) + φ(a0, a1)− φ(a1, a2) ≥ 0

by the triangle inequality.



48 KITAMURA AND STOYE

Next we treat the case where Ω is not necessarily II . Write

Ω =


ω2

1 0 . . . 0

0 ω2
2 . . . 0

. . .

0 . . . 0 ω2
I

 .

The statistic JN in (4.1) can be rewritten, using the square-root matrix Ω1/2,

JN = min
η∗=Ω1/2η:η∈C

[π̂∗ − η∗]′[π̂∗ − η∗]

or

JN = min
η∗∈C∗

[π̂∗ − η∗]′[π̂∗ − η∗]

where

C∗ = {Ω1/2Aν|ν ≥ 0}

= {A∗ν|ν ≥ 0}

with

A∗ = [a∗1, ..., a
∗
H ], a∗h = Ω1/2ah, 1 ≤ h ≤ H.

Then we can follow our previous argument replacing a’s with a∗’s, and using

∆∗(J) = conv([0, ..., ωi, ....0]′ ∈ RI , i = 1, ..., I).

instead of the simplex ∆(J). Finally, we need to verify that the acuteness condition (9.6) holds for

A∗ = {a∗1, ..., a∗H}.
For two I-vectors a and b, define a weighted taxicab metric

φΩ(a, b) :=

I∑
i=1

ωi|ai − bi|,

then the standard taxicab metric φ used above is φΩ with Ω = II . Moreover, letting a∗ = Ω1/2a and

b∗ = Ω1/2b, where each of a and b is an I-dimensional 0-1 vector, we have

a∗′b∗ =

I∑
i=1

ωi[1− |ai − bi|] = ω̄ − φΩ(a, b)
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with ω̄ =
∑I

i=1 ωi. Then for every triplet (a∗0, a
∗
1, a
∗
2) of distinct elements in A∗

(a∗1 − a∗0)′(a∗2 − a∗0) = ω̄ − φΩ(a1, a2)− ω̄ + φΩ(a0, a2)− ω̄ + φΩ(a0, a1) + ω̄ − φΩ(a0, a0)

= φΩ(a1, a2)− φΩ(a0, a2)− φΩ(a0, a1)

≥ 0,

which is the desired acuteness condition. Since JN can be written as the minimum of the quadratic

form with identity-matrix weighting subject to the cone generated by a∗’s, all the previous arguments

developed for the case with Ω = II remain valid.

Defining ξ ∼ N(0, Ŝ) and ζ = Bξ,

J̃N (τN ) ∼ min
Bt≤−τNφ

N

[(
KB

M

)
(η̂τN +N−1/2ξ − t)

]′
P−1′ΩP−1

[(
KB

M

)
(η̂τN +N−1/2ξ − t)

]
= N min

γ=[γ≤′,γ=′]′,γ≤≤−τN φ̄,γ==0,γ∈col(B)
t
(
K
[
γ̂τN +N−1/2ζ − γ

])
.

Moreover, defining γτ = γ + τNφ in the above, and using the definitions of βτ (·) and s(·)

J̃N (τN ) ∼ N min
γτ=[γτ≤

′
,γτ=′]′,γτ≤≤0,γτ==0,γτ∈col(B)

t
(
K
[
γ̂τN + τNφ+N−1/2ζ − γτ

])
= N min

γτ=[γτ≤
′
,γτ=′]′,γτ≤≤0,γτ==0,γτ∈col(B)

t
(
K
[
γτN (ĝ) + τNφ+N−1/2ζ − γτ

])
= N min

γτ=[γτ≤
′
,γτ=′]′,γτ≤≤0,γτ==0,γτ∈col(B)

t
(
K
[
βτN (ĝ) +N−1/2ζ − γτ

])
= s

(
N1/2βτN (ĝ) + ζ

)
Let ϕN (ξ) := N1/2βτN (τNξ) for ξ = (ξ1, ..., ξm)′ ∈ col(B), then from the property of βτ shown above,

its k-th element ϕkN for k ≤ m̄ satisfies

ϕkN (ξ) = 0

if |ξk| ≤ δ and ξj ≤ δ, 1 ≤ j ≤ m for large enough N . Note ϕkN (ξ) = N1/2βkN (τNξ) = 0 for k > m̄.

Define ξ̂ := ĝ/τN and using the definition of ϕN , we write

(9.7) J̃N (τN ) ∼ s
(
ϕτN (ξ̂) + ζ

)
.

Now we invoke Theorem 1 of Andrews and Soares (2010, AS henceforth). As noted before, the

function t is a positive definite quadratic form on R`, and so is its restriction on col(B). Then

their Assumptions 1-3 hold for the function s defined above if signs are adjusted appropriately as

our formulae deal with negativity constraints, whereas AS work with positivity constraints. (Note

that Assumption 1(b) does not apply here since we use a fixed weighting matrix.) The function
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ϕN in (9.7) satisfies the properties of ϕ in AS used in their proof of Theorem 1. AS imposes a

set of restrictions on the parameter space (see their Equation (2.2) on page 124). Their condition

(2.2) (vii) is a Lyapounov condition for a triangular array CLT. Following AS, consider a sequence

of distributions πN = [π′1N , ..., π
′
JN ]′, N = 1, 2, ... in P ∩ C such that (1)

√
NBπN → h for a non-

positive h as N →∞ and (2) CovπN (
√
NBπ̂)→ Σ as N →∞ where Σ is positive semidefinite. The

Lyapounov condition holds for bk(j)
′dj,n, n = 1, ..., N(j) under πN for k ∈ KR for at least one j as

Condition 4.1 is imposed for πN ∈ P. We do not impose Condition 4.1 for k ∈ KD, therefore it is

possible that limN→∞ varπjN (bk(j)
′dj,n) = 0, even for every j, when k ∈ KD. Note, however, that:

(i) The equality b′kπ̂ ≤ 0 holds by construction for every k ∈ KD and therefore its behavior does not

affect JN ; in particular whether varπjN (bk(j)
′dj,n) converges to zero or not does not matter; (ii) If

varπN (b′kdn), dn := [d′1,n, ..., d
′
J,N ]′, converges to zero for some k ∈ KD, then

√
Nb′k[η̃τN − η̂τN ] = op(1)

and therefore its contribution to J̃N (τN ) is asymptotically negligible in the size calculation. The other

conditions in AS10, namely (2.2)(i)-(vi), hold trivially. Finally, Assumptions GMS 2 and GMS 4 of

AS10 are concerned with their thresholding parameter κN for the k-th moment inequality, and by

letting κN = N1/2τNφk, the former holds by the condition
√
NτN ↑ ∞ and the latter by τN ↓ 0.

Therefore we conclude

lim inf
N→∞

inf
π∈P∩C

Pr{JN ≤ ĉ1−α} = 1− α.

�

Proof of Theorem 5.1. We begin by introducing some notation.

Notation. Let B(j) := [b1(j), ..., bm(j)]′ ∈ Rm×Ij . For F ∈ F and 1 ≤ j ≤ J , define

p
(j)
F (w) := EF [dj,n(j)|wn(j) = w], π

(j)
F = p

(j)
F (wj), πF = [π

(1)
F

′
, ..., π

(J)
F

′
]′

and

Σ
(j)
F (w) := CovF [dj,n(j)|wn(j) = w].

Note that Σ
(j)
F (w) = diag

(
p

(j)
F (w)

)
− p(j)

F (w)p
(j)
F (w)′.

The proof mimics the proof of Theorem 4.2, except for the treatment of π̂. Instead of the

sequence πN , N = 1, 2, ... in P ∩ C, consider a sequence of distributions FN = [F1N , ..., FJN ], N =

1, 2, ... in F such that
√
Nj/K(j)B(j)π

(j)
FN
→ hj , hj ≤ 0, 1 ≤ j ≤ J as N → ∞. Define Q

(j)
FN

=

EFN [qK(j)(wn(j))q
K(j)(wn(j))

′] and Ξ
(j)
FN

= EFN [B(j)Σ
(j)
FN

(wn(j))B
(j)′ ⊗ qK(j)(wn(j))q

K(j)(wn(j))
′], and

let

V
(j)
FN

:= [Im ⊗ qK(j)(wj)
′Q(j)

FN

−1
]Ξ

(j)
FN

[Im ⊗Q(j)
FN

−1
qK(j)(wj)]
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and

VFN :=

J∑
j=1

V
(j)
FN
.

Then by adapting the proof of Theorem 2 in Newey (1997) to the triangle array for the repeated

crosssection setting, we obtain

√
NVFN

− 1
2B[π̂ − πFN ]

FN
; N(0, Im).

The rest is the same as the proof of Theorem 4.2. �

Proof of Theorem 5.2. The proof follows the same steps as those in the proof of Theorem 4.2,

except for the treatment of the estimator for π. Therefore, instead of the sequence πN , N = 1, 2, ...

in P ∩ C, consider a sequence of distributions FN = [F1N , ..., FJN ], N = 1, 2, ... in FEC and the

corresponding conditional distributions P
(j)
y|w,ε;FN {y ∈ xi|j |w, ε} and F

(j)
w|zN

, 1 ≤ i ≤ Ij , 1 ≤ j ≤ J ,

N = 1, 2, ... such that
√
Nj/(M(j) ∨ L(j)))B(j)π

(j)
FN
→ hj , hj ≤ 0, 1 ≤ j ≤ J as N → ∞, where

πFN = π(P
(1)
y|w,εN

, ..., P
(J)
y|w,εN

) whereas the definitions of V
(j)
FN
, 1 ≤ j ≤ J are given shortly. Define

S
(j)
FN

= EFN [sM(j)(χn(j))s
M(j)(χn(j))

′] as well as

Ξ̄
(j)
1FN

= EFN [B(j)Σ̄
(j)
FN

(χn(j))B
(j)′ ⊗ sM(j)(χn(j))s

M(j)(χn(j))
′]

and

Ξ̄
(j)
2FN

= [B(j) ⊗ IM(j)]EFN [mn(j);FNm
′
n(j);FN

][B(j)′ ⊗ IM(j)]

where

Σ
(j)
FN

(χ) := CovFN [dj,n(j)|χn(j) = χ],

mn(j);FN := [m′1,n(j);FN
,m′2,n(j);FN

, · · · ,m′Ij ,n(j);FN
]′,

mi,n(j);FN :=

EFN

[
γ̇N (εm(j))

∂

∂ε
P

(j)
y|w,ε;FN

{
y ∈ xi|j |wm(j), εm(j)

}
sM(j)(χm(j))r

L(j)(zm(j))
′RFN (j)−1rL(j)(zn(j))umn(j);FN

]
∣∣∣∣di|j,n(j), wn(j), zn(j)

]
,

RFN (j) := EFN [rL(j)(zn(j))r
L(j)(zn(j))

′], umn(j);FN := 1{wn(j) ≤ wm(j)} − F (j)
w|zN

(wm(j)|zn(j)).

With these definitions, let

V
(j)
FN

:=

[
Im ⊗D(j)′S(j)

FN

−1
]

Ξ̄
(j)
FN

[
Im ⊗ S(j)

FN

−1
D(j)

]
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with Ξ̄
(j)
FN

= Ξ̄
(j)
1FN

+ Ξ̄
(j)
2FN

. Define

V FN :=
J∑
j=1

V
(j)
FN
.

Then by adapting the proof of Theorem 7 in Imbens and Newey (2002) to the triangle array for the

repeated crosssection setting, for the j’s that satisfy Condition (iv) we obtain

√
NV FN

− 1
2B[π̂ − πFN ]

FN
; N(0, Im).

The rest is the same as the proof of Theorem 4.2. �

10. Appendix B: Algorithms for Computing A

This appendix details algorithms for computation of A. The first algorithm is a brute-force

approach that generates all possible choice patterns and then verifies which of these are rationalizable.

The second one avoids the construction of the vast majority of possible choice patterns because it

checks for rationality along the way as choice patterns are constructed. The third algorithm uses

proposition 1. All implementations are in MATLAB using CVX and are available from the authors.

The instruction to FW-test a sequence refers to use of the Floyd-Warshall algorithm to detect choice

cycles. This works best in our implementation, but could also be a depth-first search.

Algorithms use notation introduced in the proof of Proposition 3.3.

Computing A as in Proposition 3.2.

1. Initialize m1 = ... = mJ = 1.

2. Initialize l = 2.

3. Set c(B1) = m1, ..., c(Bl) = ml. FW-test (c(B1), ..., c(Bl)).
4. If no cycle is detected, move to step 5. Else:

4a. If ml < Il, set ml = ml + 1 and return to step 3.

4b. If ml = Il and ml−1 < Il−1, set ml = 1, ml−1 = ml−1 + 1, l = l − 1, and return

to step 3.

4c. If ml = Il, ml−1 = Il−1, and ml−2 < Il−2, set ml = ml−1 = 1, ml−2 = ml−2 + 1,

l = l − 2, and return to step 3.

(...)

4z. Terminate.

5. If l < J, set l = l + 1, ml = 1, and return to step 3.

6. Extend A by the column [m1, ...,mJ ]′. Also:
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6a. If mJ < IJ, set mJ = mJ + 1 and return to step 3.

6b. If mJ = IJ and mJ−1 < IJ−1, set mJ = 1, mJ−1 = mJ−1 + 1, l = J − 1, and

return to step 3.

6c. If ml = Il, ml−1 = Il−1, and ml−2 < Il−2, set ml = ml−1 = 1, ml−2 = ml−2 + 1,

l = l − 2, and return to step 3.

(...)

6z. Terminate.

Refinement using Proposition 3.3

Let budgets be arranged s.t. (B1, ...,BM ) do not intersect BJ ; for exposition of the algorithm,

assume BJ is above these budgets. Then pseudo-code for an algorithm that exploits proposition 1

(calling either of the preceding algorithms for intermediate steps) is as follows.

1. Use brute force or crawling to compute a matrix AM+1→J−1 corresponding to

budgets (BM+1, ...,BJ), though using the full X corresponding to budgets (B1, ...,BJ).21

2. For each column aM+1→J−1 of AM+1→J−1, go through the following steps:

2.1 Compute (by brute force or crawling) all vectors a1→M s.t.

(a1→M , aM+1,J−1) is rationalizable.

2.2 Compute (by brute force or crawling) all vectors

aJ s.t. (aM+1,J−1, aJ) is rationalizable.

2.3 All stacked vectors (a′1→M , a
′
M+1,J−1, a

′
J)′ are valid columns of A.

21This matrix has more rows than an A matrix that is only intended to apply to choice problems (BM+1, ...,BJ).
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