
SUPPLEMENTAL APPENDIX FOR “ROBUSTNESS, INFINITESIMAL

NEIGHBORHOODS, AND MOMENT RESTRICTIONS”

YUICHI KITAMURA, TAISUKE OTSU, AND KIRILL EVDOKIMOV

A.1. Proofs of Main Results

This Appendix presents the proofs of some of the results presented in the previous sections.

A.1.1. Proof of Lemma 2.1. We first show the claim for α < 1
2 , that is,

(A.1) (1− α) Iα (P,Q)− 1

2
I 1

2
(P,Q) ≥ 0.

Let Hα (x) =
1
α (1− xα)− 2

(
1− x

1
2

)
, 0 ≤ x ≤ ∞, then the above inequality becomes

(A.2)

ˆ
Hα

(
p

q

)
qdν ≥ 0.

Note

d

dx
Hα (x) = −xα−1 + x−

1
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

> 0 if x > 1

= 0 if x = 1

< 0 if x < 1.

The above holds for the case with α = 0 as well, since H0 (x) = − log x − 2
(
1− x

1
2

)
. Moreover,

Hα (1) = 0. Therefore Hα (x) ≥ 0 for all x ≥ 0, and the desired inequality (A.2) follows immediately.

Next, we prove the case with α > 1
2 , that is,

αIα (P,Q) ≥ 1

2
I 1

2
(P,Q) .

Let β = 1− α < 1
2 , then the above inequality becomes

(A.3) (1− β) I1−β (P,Q) ≥ 1

2
I 1

2
(P,Q) .

By (A.1) and the symmetry of the Hellinger distance,

(1− β)Iβ (Q,P ) ≥ 1

2
I 1

2
(Q,P ) =

1

2
I 1

2
(P,Q) .

But the equality I1−β (P,Q) = Iβ (Q,P ) holds for every β ∈ R, and (A.3) follows.
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Notation. Let C be a generic positive constant, ‖·‖ be the L2-metric,

θn = θ0 + t/
√
n, T̄Qn = T̄ (Qn) , T̄Pn = T̄ (Pn) ,

P̄θ,Q = arg min
P∈P̄θ

H (P,Q) , Rn (Q, θ, γ) = −
ˆ

1

(1 + γ′gn (x, θ))
dQ,

gn (x, θ) = g (x, θ) I {x ∈ Xn} , Λn = G′Ω−1gn (x, θ0) , Λ = G′Ω−1g (x, θ0) ,

ψn,Qn = −2

(ˆ
ΛnΛ

′
ndQn

)−1 ˆ
Λn

{
dQ1/2

n − dP̄
1/2
θ0,Qn

}
dQ1/2

n .

A.1.2. Proof of Theorem 3.1.

A.1.2.1. Proof of (i). Pick arbitrary r > 0 and t ∈ R
p. Consider the following parametric submodel

having the likelihood ratio

(A.4)
dPθn,ζn
dP0

=
1 + ζ ′ngn (x, θn)´

(1 + ζ ′ngn (x, θn)) dP0
= f (x, θn, ζn) ,

where

ζn = −EP0

[
g (x, θn) gn (x, θn)

′]−1
EP0 [g (x, θn)] .

Note that Pθ0,0 = P0, Pθn,ζn ∈ Pθn (by the definition of ζn), and ζn = O
(
n−1/2

)
(by the proof of

Lemma A.4 (i)). Also, since supx∈X |ζ ′ngn (x, θn)| = O
(
n−1/2mn

)
= o (1), the likelihood ratio

dPθn,ζn
dP0

is well-defined for all n large enough. So, for this submodel the mapping Ta must satisfy (3.1).

We now evaluate the Hellinger distance between Pθn,ζn and P0. An expansion around ζn = 0 yields

H (Pθn,ζn , P0) =

∥∥∥∥∥∥ζ ′n
∂f (x, θn, ζn)

1/2

∂ζn

∣∣∣∣∣
ζn=0

dP
1/2
0 +

1

2
ζ ′n

∂2f (x, θn, ζn)
1/2

∂ζn∂ζ ′n

∣∣∣∣∣
ζn=ζ̇n

ζndP
1/2
0

∥∥∥∥∥∥ ,
where ζ̇n is a point on the line joining ζn and 0, and

∂f (x, θn, ζn)
1/2

∂ζn

∣∣∣∣∣
ζn=0

=
1

2
{gn (x, θn)−EP0 [gn (x, θn)]} ,

∂2f (x, θn, ζn)
1/2

∂ζn∂ζ ′n
= −1

4

(
1 + ζ ′ngn (x, θn)

)−3/2 (
1 + ζ ′nEP0 [gn (x, θn)]

)−1/2
gn (x, θn) gn (x, θn)

′

−1

2

(
1 + ζ ′ngn (x, θn)

)−1/2 (
1 + ζ ′nEP0 [gn (x, θn)]

)−3/2
gn (x, θn)EP0 [gn (x, θn)]

′

+
3

4

(
1 + ζ ′ngn (x, θn)

)1/2 (
1 + ζ ′nEP0 [gn (x, θn)]

)−5/2
EP0 [gn (x, θn)]EP0 [gn (x, θn)]

′ .
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Thus, a lengthy but straightforward calculation combined with Lemma A.4, ζn = O
(
n−1/2

)
, and

supx∈X |ζ ′ngn (x, θn)| = o (1) implies

(A.5) nH (Pθn,ζn , P0)
2 = n

∥∥∥∥12ζ ′n (gn (x, θn)− EP0 [gn (x, θn)]) dP
1/2
0

∥∥∥∥
2

+ o (1) → 1

4
t′Σ−1t.

Based on this limit, a lower bound of the maximum bias of Ta is obtained as (see, Rieder (1994, eq.

(56) on p. 180))

lim inf
n→∞ sup

Q∈BH(P0,r/
√
n)
n (τ ◦ Ta (Q)− τ (θ0))

2

≥ lim inf
n→∞ sup

{t∈Rp:Pθn,ζn∈BH(P0,r/
√
n)}

n (τ ◦ Ta (Pθn,ζn)− τ (θ0))
2

≥ max
{t∈Rp: 1

4
t′Σt≤r2−ε}

((
∂τ (θ0)

∂θ

)′
t

)2

= 4
(
r2 − ε

)(∂τ (θ0)
∂θ

)′
Σ−1

(
∂τ (θ0)

∂θ

)
,

for each ε ∈ (0, r2), where the first inequality follows from the set inclusion relationship, the second

inequality follows from (3.1) and (A.5), and the equality follows from the Kuhn-Tucker theorem. Since

ε can be arbitrarily small, we obtain the conclusion.

A.1.2.2. Proof of (ii). Pick arbitrary r > 0 and sequence Qn ∈ BH (P0, r/
√
n). We first show the

Fisher consistency of T̄ . From Lemma A.2 (note: Pθn,ζn ∈ BH (P0, r/
√
n) for all n large enough),

√
n
(
T̄ (Pθn,ζn)− θ0

)
= −√

nΣ−1

ˆ
ΛndPθn,ζn + o (1)

= Σ−1G′Ω−1

ˆ
∂g
(
x, θ̇
)
/∂θdPθn,ζnt+ o (1)

→ t

for all n large enough, where θ̇ is a point on the line joining θn and θ0, the second equality follows from´
g (x, θ0) I {x /∈ Xn} dPθn,ζn = o

(
n−1/2

)
(by a similar argument to (A.4)),

´
g (x, θn) dPθn,ζn = 0 (by

Pθn,ζn ∈ Pθn), and an expansion around θn = θ0, and the convergence follows from the last statement

of Lemma A.4 (i). Therefore, T̄ is Fisher consistent.

We next show (3.1). An expansion of τ ◦ T̄Qn around T̄Qn = θ0, Lemmas A.1 (ii) and A.2, and

Assumption 3.1 (viii) imply

√
n
(
τ ◦ T̄Qn − τ (θ0)

)
= −√

n

(
∂τ (θ0)

∂θ

)′
Σ−1

ˆ
ΛndQn + o (1)

= −√
nν ′0

ˆ
Λn

{
dQ1/2

n − dP
1/2
0

}
dQ1/2

n −√
nν ′0

ˆ
ΛndP

1/2
0

{
dQ1/2

n − dP
1/2
0

}
+ o (1) ,
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where we denote ν ′0 =
(
∂τ(θ0)
∂θ

)′
Σ−1. From the triangle inequality,

n
(
τ ◦ T̄Qn − τ (θ0)

)2
≤ n

⎧⎨
⎩
∣∣∣ν ′0 ´ Λn {dQ1/2

n − dP
1/2
0

}
dQ

1/2
n

∣∣∣2 + ∣∣∣ν ′0 ´ Λn {dQ1/2
n − dP

1/2
0

}
dP

1/2
0

∣∣∣2
+2
∣∣∣ν ′0 ´ Λn {dQ1/2

n − dP
1/2
0

}
dQ

1/2
n

∣∣∣ ∣∣∣ν ′0 ´ Λn {dQ1/2
n − dP

1/2
0

}
dP

1/2
0

∣∣∣
⎫⎬
⎭+ o (1)

= n {A1 +A2 + 2A3}+ o (1) .

For A1, observe that

A1 ≤
∣∣∣∣ν ′0
ˆ

ΛnΛ
′
ndQnν0

∣∣∣∣
∣∣∣∣
ˆ {

dQ1/2
n − dP

1/2
0

}2
∣∣∣∣ ≤ B∗ r2

n
+ o

(
n−1

)
,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality

follows from Lemma A.5 (i) and Qn ∈ BH (P0, r/
√
n). Similarly, we have A2 ≤ B∗ r2

n + o
(
n−1

)
and

A3 ≤ B∗ r2
n + o

(
n−1

)
. Combining these terms,

(A.6) lim sup
n→∞

n
(
τ ◦ T̄Qn − τ (θ0)

)2 ≤ 4r2B∗,

for any sequence Qn ∈ BH (P0, r/
√
n) and r > 0. Pick any r > 0. Since the supremum

sup
Q∈BH

(
P0,

r√
n

) n
(
τ ◦ T̄ (Q)− τ (θ0)

)2
is finite for all n large enough (from Lemma A.1 (i)), there

exists a sequence Q∗
n ∈ BH (P0, r/

√
n) such that

lim sup
n→∞

n
(
τ ◦ T̄Q∗

n
− τ (θ0)

)2
= lim sup

n→∞
sup

Q∈BH

(
P0,

r√
n

)n
(
τ ◦ T̄ (Q)− τ (θ0)

)2
.

Therefore, the conclusion follows by (A.6).

A.1.3. Proof of Theorem 3.2.

A.1.3.1. Proof of (i). Pick arbitrary ε ∈ (0, r2) and r > 0. Consider the parametric submodel Pθn,ζn

defined in (A.4). The convolution theorem (Theorem 25.20 of van der Vaart (1998)) implies that for

each t ∈ R
p, there exists a probability measure M0 which does not depend on t and satisfies

(A.7)
√
n (τ ◦ Ta (Pn)− τ ◦ Ta (Pθn,ζn)) d→M0 ∗N (0, B∗) under Pθn,ζn .

Let

t∗ = arg max
{t∈Rp: 1

4
t′Σt≤r2−ε}

((
∂τ (θ0)

∂θ

)′
t

)2

s.t.

(
∂τ (θ0)

∂θ

)′
t∗
ˆ
ξdM0 ∗N (0, B∗) ≥ 0.

Since the integral
´
ξdM0 ∗ N (0, B∗) does not depend on t, such t∗ always exists. From 1

4t
∗′Σt∗ ≤

r2 − ε and (A.5), it holds that Pθ0+t∗/
√
n,ζn ∈ BH (P0, r/

√
n) for all n large enough. Also, note that
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EPθn,ζn
[supθ∈Θ |g (x, θ)|η] <∞ for all n large enough (by supx∈X |ζ ′ngn (x, θn)| = o (1) and Assumption

3.1 (v)). Thus, Pθ0+t∗/
√
n,ζn ∈ B̄H (P0, r/

√
n) for all n large enough, and we have

lim
b→∞

lim inf
n→∞ sup

Q∈B̄H(P0,r/
√
n)

ˆ
b ∧ n (τ ◦ Ta (Pn)− τ (θ0))

2 dQ⊗n

≥ lim
b→∞

lim inf
n→∞

ˆ
b ∧ n (τ ◦ Ta (Pn)− τ (θ0))

2 dP⊗n
θ0+t∗/

√
n,ζn

= lim
b→∞

lim inf
n→∞

ˆ
b ∧ n

(
ξ +

(
∂τ (θ0)

∂θ

)′
t∗
)2

dM0 ∗N (0, B∗)

=

ˆ
ξ2dM0 ∗N (0, B∗) +

((
∂τ (θ0)

∂θ

)′
t∗
)2

+ 2

(
∂τ (θ0)

∂θ

)′
t∗
ˆ
ξdM0 ∗N (0, B∗)

≥ {
1 + 4

(
r2 − ε

)}
B∗,

where the first equality follows from the Fisher consistency of Ta, (A.9), and the continuous map-

ping theorem, the second equality follows from the monotone convergence theorem, and the second

inequality follows from the definition of t∗. Since ε can be arbitrarily small, we obtain the conclusion.

A.1.3.2. Proof of (ii). Pick arbitrary r > 0 and b > 0. Applying the inequality b ∧ (c1 + c2) ≤
b ∧ c1 + b ∧ c2 for any c1, c2 ≥ 0,

lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)

ˆ
b ∧ n (τ ◦ T (Pn)− τ (θ0))

2 dQ⊗n

≤ lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)

ˆ
b ∧ n (τ ◦ T (Pn)− τ ◦ T̄ (Pn)

)2
dQ⊗n

+2lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)

ˆ
b ∧ {n ∣∣τ ◦ T (Pn)− τ ◦ T̄ (Pn)

∣∣ ∣∣τ ◦ T̄ (Pn)− τ (θ0)
∣∣} dQ⊗n

+lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)

ˆ
b ∧ n (τ ◦ T̄ (Pn)− τ (θ0)

)2
dQ⊗n

= A1 + 2A2 +A3,(A.8)

For A1,

A1 ≤ b× lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)

ˆ
(x1,...,xn)/∈Xn

n

dQ⊗n

≤ b× lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)

n∑
i=1

ˆ
xi /∈Xn

dQ

≤ b× lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)
nm−η

n EQ

[
sup
θ∈Θ

|g (x, θ)|η
]
= 0,(A.9)



A-6 YUICHI KITAMURA, TAISUKE OTSU, AND KIRILL EVDOKIMOV

where the first inequality follows from T (Pn) = T̄ (Pn) for all (x1, . . . , xn) ∈ X n
n , the second inequality

follows from a set inclusion relation, the third inequality follows from the Markov inequality, and the

equality follows from Assumption 3.1 (vii) and EQ [supθ∈Θ |g (x, θ)|η] <∞ for all Q ∈ B̄H (P0, r/
√
n).

Similarly, we have A2 = 0.

We now consider A3. Note that the mapping fb,n (Q) =
´
b ∧ n (τ ◦ T̄ (Pn)− τ (θ0)

)2
dQ⊗n is con-

tinuous in Q ∈ BH (P0, r/
√
n) under the Hellinger distance for each n, and the set BH (P0, r/

√
n)

(not B̄H (P0, r/
√
n)) is compact under the Hellinger distance for each n. Thus, there exists Q̃b,n ∈

BH (P0, r/
√
n) such that supQ∈BH(P0,r/

√
n) fn (Q) = fn

(
Q̃b,n

)
for each n. Then we have

A3 ≤ lim sup
n→∞

sup
Q∈BH(P0,r/

√
n)

ˆ
b ∧ n (τ ◦ T̄ (Pn)− τ (θ0)

)2
dQ⊗n

= lim sup
n→∞

ˆ
b ∧ n (τ ◦ T̄ (Pn)− τ (θ0)

)2
dQ̃⊗n

b,n

=

ˆ
b ∧ (ξ + t̃b

)2
dN (0, B∗)

≤ B∗ + t̃2b

≤ (
1 + 4r2

)
B∗,

where t̃b = lim sup
n→∞

√
n
(
τ ◦ T̄

(
Q̃b,n

)
− τ (θ0)

)
, the first inequality follows from B̄H (P0, r/

√
n) ⊆

BH (P0, r/
√
n), the second equality follows from Lemma A.8 (with Qn = Q̃b,n) and the continu-

ous mapping theorem, the second inequality follows from b ∧ c ≤ c and a direct calculation, and the

last inequality follows from Theorem 3.1 (ii). Combining these results, the conclusion is obtained.

A.1.4. Proof of Theorem 3.3.

A.1.4.1. Proof of (i). Consider the parametric submodel Pθn,ζn defined in (A.4). Since 
 is uniformly

continuous on R̄
p (by Assumption 3.2) and Ta is Fisher consistent,

b ∧ 
 (√n {Sn − τ ◦ Ta (Pθn,ζn)}
)− b ∧ 


(√
n {Sn − τ (θ0)} −

(
∂τ (θ0)

∂θ

)′
t

)
→ 0,

uniformly in t, |t| < c and {Sn}n∈N for each c > 0 and b > 0. Thus,

(A.10)

inf
Sn∈S

sup
|t|≤c

ˆ
b∧
 (√n {Sn − τ ◦ Ta (Pθn,ζn)}

)
dP⊗n

θn,ζn
= inf

Rn∈R
sup
|t|≤c

ˆ
b∧


(
Rn −

(
∂τ (θ0)

∂θ

)′
t

)
dP⊗n

θn,ζn
+o (1) ,
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for each c > 0, whereRn =
√
n {Sn − τ (θ0)} is a standardized estimator andR = {√n {Sn − τ (θ0)} : Sn ∈ S}.

By expanding the log likelihood ratio log
dP⊗n

θn,ζn

dP⊗n
0

around ζn = 0,

log
dP⊗n

θn,ζn

dP⊗n
0

= ζ ′n
n∑
i=1

{gn (xi, θn)−EP0 [gn (x, θn)]}

−ζ
′
n

∑n
i=1 gn (xi, θn) gn (xi, θn) ζn

2
(
1 + ζ̇ ′ngn (xi, θn)

)2 +
nζ ′nEP0 [gn (x, θn)]EP0 [gn (x, θn)]

′ ζn

2
(
1 + ζ̈ ′n

´
gn (x, θn)

)2
= L1 − L2 + L3.

where ζ̇n and ζ̈n are points on the line joining ζn and 0. For L1, an expansion of gn (x, θn) (in ζn)

around θn = θ0 combined with Lemma A.4 (i) implies that under P0,

L1 = −t′G′Ω−1 1√
n

n∑
i=1

{gn (xi, θn)− EP0 [gn (x, θn)]}+ op (1) .

Also, Lemma A.4 (i) and supx∈X |ζ ′ngn (x, θn)| = o (1) imply that under P0,

L2
p→ 1

2
t′Σt, L3 → 0.

Therefore, in the terminology of Rieder (1994, Definition 2.2.9), the parametric model Pθn,ζn is asymp-

totically normal with the asymptotic sufficient statistic −G′Ω−1 1√
n

∑n
i=1 {gn (xi, θn)− EP0 [gn (x, θn)]}

and the asymptotic covariance matrix Σ. Note that this is essentially the LAN (local asymptotic nor-

mality) condition introduced by LeCam. If Pθn,ζn is asymptotically normal in this sense, we can

directly apply the result of the minimax risk bound by Rieder (1994, Theorem 3.3.8 (a)), that is

(A.11) lim
b→∞

lim
c→∞ lim inf

n→∞ inf
Sn∈S

sup
|t|≤c

ˆ
b ∧ 


(
Rn −

(
∂τ (θ0)

∂θ

)′
t

)
dP⊗n

θn,ζn
≥
ˆ

dN (0, B∗)

(see also Theorem 1 in LeCam and Yang (1990)). From (A.10) and (A.11),

lim
b→∞

lim
c→∞ lim inf

n→∞ inf
Sn∈S

sup
|t|≤c

ˆ
b ∧ 
 (√n {Sn − τ ◦ Ta (Pθn,ζn)}

)
dP⊗n

θn,ζn
≥
ˆ

dN (0, B∗) .

Finally, since EPθn,ζn
[supθ∈Θ |g (x, θ)|η] < ∞ for all n large enough (by supx∈X |ζ ′ngn (x, θn)| = o (1)

and Assumption 3.1 (v)), we have Pθn,ζn ∈ B̄H (P0, r/
√
n) for all t satisfying 1

4t
′Σt ≤ r2 − ε with any

ε ∈ (0, r2) and all n large enough. Therefore, the set inclusion relation yields

lim
b→∞

lim
r→∞ lim inf

n→∞ inf
Sn∈S

sup
Q∈B̄H(P0,r/

√
n)

ˆ
b ∧ 
 (√n {Sn − τ ◦ Ta (Q)}) dQ⊗n

≥ lim
b→∞

lim
c→∞ lim inf

n→∞ inf
Sn∈S

sup
|t|≤c

ˆ
b ∧ 
 (√n {Sn − τ ◦ Ta (Pθn,ζn)}

)
dP⊗n

θn,ζn
,

which implies the conclusion.
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A.1.4.2. Proof of (ii). Pick arbitrary r > 0 and b > 0. Since T (Pn) = T̄ (Pn) for all (x1, . . . , xn) ∈ X n
n ,

lim
n→∞ sup

Q∈B̄H(P0,r/
√
n)

ˆ
b ∧ 
 (√n{τ ◦ T (Pn)− τ ◦ T̄ (Q)

})
dQ⊗n

≤ lim
n→∞ sup

Q∈B̄H(P0,r/
√
n)

ˆ
(x1,...,xn)/∈Xn

n

b ∧ 
 (√n{τ ◦ T (Pn)− τ ◦ T̄ (Q)
})
dQ⊗n

+ lim
n→∞ sup

Q∈B̄H(P0,r/
√
n)

ˆ
(x1,...,xn)∈Xn

n

b ∧ 
 (√n{τ ◦ T̄ (Pn)− τ ◦ T̄ (Q)
})
dQ⊗n.(A.12)

An argument similar to (A.9) implies that the first term of (A.12) is zero. From X n
n ⊆ X n and

B̄H (P0, r/
√
n) ⊆ BH (P0, r/

√
n), the second term of (A.12) is bounded from above by

lim
n→∞ sup

Q∈BH(P0,r/
√
n)

ˆ
b ∧ 
 (√n{τ ◦ T̄ (Pn)− τ ◦ T̄ (Q)

})
dQ⊗n =

ˆ
b ∧ 
dN (0, B∗) ,

where the equality follows from Lemma A.8, the uniform continuity of 
 over R̄p, and compactness of

BH (P0, r/
√
n) under the Hellinger distance. Let b→ ∞ and the conclusion follows.

A.2. Auxiliary Lemmas

Lemma A.1. Suppose that Assumption 3.1 holds. Then

(i): for each r > 0, T̄ (Q) exists for all Q ∈ BH (P0, r/
√
n) and all n large enough,

(ii): T̄Qn → θ0 as n→ ∞ for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n).

Proof of (i). The proof is split into several steps. Let G (θ,Q) be the convex hull of the support of

g (x, θ) under x ∼ Q.

In the first step, we show 0 ∈ intG (θ0, P0). If 0 /∈ G (θ0, P0), then we have EP0 [g (x, θ0)] �= 0, which is

a contradiction. Thus, it is enough to show that 0 is not on the boundary of G (θ0, P0). Suppose 0 is

indeed on the boundary of G (θ0, P0). In this case, we have two cases: (a) there exists a constant m-

vector a �= 0 such that a′g ≥ 0 for all g ∈ G (θ0, P0) and P0 {g ∈ G (θ0, P0) : a
′g > 0} > 0, or (b) there

exists a �= 0 such that a′g = 0 for all g ∈ G (θ0, P0). For the case (a), we have a′EP0 [g (x, θ0)] > 0,

which contradicts with EP0 [g (x, θ0)] = 0. For the case (b), we have a′EP0

[
g (x, θ0) g (x, θ0)

′] a = 0,

which contradicts with Assumption 3.1 (vi).

In the second step, we show that for each r > 0, there exists δ > 0 such that 0 ∈ intG (θ,Q) for all

|θ − θ0| ≤ δ and all Q ∈ BH (P0, δ). Pick any r > 0. From the first step, we can find m + 1 points

{g̃1, . . . , g̃m+1} = {g (x̃1, θ0) , . . . , g (x̃m+1, θ0)} in the support of g (x, θ0) under x ∼ P0 such that 0 is

interior of the convex hull of {g̃1, . . . , g̃m+1}. From the property of the convex hull (Rockafeller, 1970,

Corollary 2.3.1), we can take cr > 0 such that for any points {g1, . . . , gm+1} satisfying |gj − g̃j | ≤ cr
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for j = 1, . . . ,m + 1, the interior of the convex hull of {g1, . . . , gm+1} contains 0. Let us take any

j = 1, . . . ,m + 1. For the second step, it is sufficient to show that there exists δj > 0 such that

Q {|g (x, θ)− g̃j | ≤ cr} > 0 for all |θ − θ0| ≤ δj and all Q ∈ BH (P0, δj). Suppose this is false,

i.e., for any δj > 0, we can take a pair (Qj , θj) such that H (Qj, P0) ≤ δj , |θj − θ0| ≤ δj , and

Qj {|g (x, θj)− g̃j | ≤ cr} = 0. Then we have

δj ≥ H (Qj, P0) ≥
√ˆ

{|g(x,θj)−g̃j |≤cr}

(√
dQj −

√
dP0

)2
=
√
P0 {|g (x, θj)− g̃j | ≤ cr}.

On the other hand, by Assumption 3.1 (iv), the dominated convergence theorem guarantees

P0 {|g (x, θj)− g̃j | ≤ cr} → P0 {|g (x, θ0)− g̃j | ≤ cr} > 0 as θj → θ0.

Since δj can be arbitrarily small, we have a contradiction. This completes the second step.

In the third step, we show that for each r > 0, there exists δ > 0 such that Rn (θ,Q) = infP∈P̄θ,P
QH (P,Q)

has a minimum on {θ ∈ Θ : |θ − θ0| ≤ δ} for all Q ∈ BH

(
P0,

r√
n

)
and all n large enough. Let us

take δ > 0 to satisfy the conclusion of the second step. By Assumption 3.1 (iv), we can take Nδ

to satisfy max1≤j≤m+1 supθ∈Θ,|θ−θ0|≤δ |g (x̃j, θ)| ≤ mNδ
. Thus, letting Gn (θ,Q) be the convex hull

of the support of gn (x, θ) under x ∼ Q, the second step also guarantees that for each r > 0,

there exists δ > 0 such that 0 ∈ intGn (θ,Q) for all |θ − θ0| ≤ δ, all Q ∈ BH (P0, δ), and all

n ≥ Nδ. Based on this, the convex duality result in Borwein and Lewis (1993, Theorem 3.4) im-

plies Rn (θ,Q) = supγ∈Rm − ´ 1
(1+γ′gn(x,θ))dQ for all |θ − θ0| ≤ δ, all Q ∈ BH (P0, δ), and all n ≥ Nδ.

Since supγ∈Rm − ´ 1
(1+γ′gn(x,θ))dQ is continuous at all θ with |θ − θ0| ≤ δ (by the maximum theorem),

the Weierstrass theorem completes the third step.

Finally, based on the third step, it is sufficient for the conclusion to show that for every r > 0, there

exists N ∈ N such that Rn (θ0, Q) < infθ∈Θ:|θ−θ0|>δ Rn (θ,Q) for all n ≥ N and all Q ∈ BH

(
P0,

r√
n

)
.

Pick any r > 0. We first derive an upper bound of Rn (θ0, Q) = supγ∈Rm − ´ 1
(1+γ′gn(x,θ0))dQ. From

Lemma A.5 (ii), γn (θ0, Q) = argmaxγ∈Rm − ´ 1
(1+γ′gn(x,θ0))dQ exists and supx∈X

∣∣γn (θ0, Q)′ gn (x, θ0)
∣∣ ≤

1
2 for all n large enough and all Q ∈ BH

(
P0,

r√
n

)
. Thus, by a second-order expansion around

γn (θ0, Q) = 0, we have

Rn (θ0, Q) ≤ −1 + γn (θ0, Q)′
ˆ
gn (x, θ0) dQ.

Define C∗ = infθ∈Θ:|θ−θ0|>δ |EP0 [g (x, θ)]|2 / (1 + |EP0 [g (x, θ)]|) > 0. From Lemma A.5 andmnn
−1/2 →

0, it holds

(A.1) mn (R (θ0, Q) + 1) ≤ mn

∣∣∣∣γn (θ0, Q)′
ˆ
gn (x, θ0) dQ

∣∣∣∣ < C∗

4
,
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for all n large enough and all Q ∈ BH

(
P0,

r√
n

)
. We now derive a lower bound of Rn (θ,Q) with

|θ − θ0| > δ. Pick any θ ∈ Θ such that |θ − θ0| > δ, and take any n large enough and Q ∈ BH

(
P0,

r√
n

)
to satisfy (A.1). If 0 /∈ Gn (θ,Q), then Rn (θ,Q) = +∞. Thus, we concentrate on the case of

0 ∈ Gn (θ,Q), which guarantees Rn (θ,Q) = supγ∈Rm − ´ 1
(1+γ′gn(x,θ))dQ (Borwein and Lewis, 1993,

Theorem 3.4). Let γ0 (θ) = EP0 [g (x, θ)] / (1 + |EP0 [g (x, θ)]|). Observe that

Rn (θ,Q) ≥ −
ˆ

1(
1 +m−1

n γ0 (θ)
′ gn (x, θ)

)dQ
= −1 +m−1

n γ0 (θ)
′
ˆ
gn (x, θ) dQ−m−2

n

ˆ (
γ0 (θ)

′ gn (x, θ)
)2(

1 + t (x)m−1
n γ0 (θ)

′ gn (x, θ)
)3dQ,

where the second equality follows from an expansion (t (x) ∈ (0, 1) for almost every x under Q). From

a similar argument to Lemma A.5 with supθ∈Θ |γ0 (θ)| ≤ 1 and mn → ∞,

sup
θ∈Θ

∣∣∣∣
ˆ
gn (x, θ) dQ−

ˆ
g (x, θ) dP0

∣∣∣∣ ≤ C∗

4
, m−1

n sup
θ∈Θ

∣∣∣∣∣
ˆ (

γ0 (θ)
′ gn (x, θ)

)2(
1 + t1 (x)m

−1
n γ0 (θ)

′ gn (x, θ)
)3 dQ

∣∣∣∣∣ ≤ C∗

4
,

for all n large enough and all Q ∈ BH

(
P0,

r√
n

)
. Combining these results and using the definition of

C∗, we obtain

(A.2) inf
θ∈Θ:|θ−θ0|>δ

mn (Rn (θ,Q) + 1) ≥ C∗

2
,

for all n large enough and all Q ∈ BH

(
P0,

r√
n

)
. Therefore, (A.1) and (A.2) complete the proof of the

final step.

Proof of (ii). Pick arbitrary r > 0 and sequence Qn ∈ BH (P0, r/
√
n). From the triangle inequality,

(A.3)

sup
θ∈Θ

|EQn [gn (x, θ)]− EP0 [g (x, θ)]| ≤ sup
θ∈Θ

|EQn [gn (x, θ)]− EP0 [gn (x, θ)]|+sup
θ∈Θ

|EP0 [g (x, θ) I {x /∈ Xn}]| .

The first term of (A.3) satisfies

sup
θ∈Θ

|EQn [gn (x, θ)]− EP0 [gn (x, θ)]|

≤ sup
θ∈Θ

∣∣∣∣
ˆ
gn (x, θ)

{
dQ1/2

n − dP
1/2
0

}2
∣∣∣∣+ 2 sup

θ∈Θ

∣∣∣∣
ˆ
gn (x, θ) dP

1/2
0

{
dQ1/2

n − dP
1/2
0

}∣∣∣∣
≤ mn

r2

n
+ 2

√
EP0

[
sup
θ∈Θ

|g (x, θ)|2
]
r√
n
= O

(
n−1/2

)
,

where the first inequality follows from the triangle inequality, the second inequality follows from

Qn ∈ BH (P0, r/
√
n) and the Cauchy-Schwarz inequality, and the equality follows from Assumption
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3.1 (v) and (vii). The second term of (A.3) satisfies

sup
θ∈Θ

|EP0 [g (x, θ) I {x /∈ Xn}]|

≤
(ˆ

sup
θ∈Θ

|g (x, θ)|η dP0

)1/η (ˆ
I {x /∈ Xn} dP0

)(η−1)/η

≤
(
EP0

[
sup
θ∈Θ

|g (x, θ)|η
])1/η (

m−η
n EP0

[
sup
θ∈Θ

|g (x, θ)|η
])(η−1)/η

= o
(
n−1/2

)
,(A.4)

where the first inequality follows from the Hölder inequality, and the second inequality follows from

the Markov inequality, and the equality follows from Assumption 3.1 (v) and (vii). Combining these

results, we obtain the uniform convergence supθ∈Θ |EQn [gn (x, θ)]− EP0 [g (x, θ)]| → 0. Therefore,

from the triangle inequality and
∣∣EQn

[
gn
(
x, T̄Qn

)]∣∣ = O
(
n−1/2

)
(Lemma A.6 (i)),

∣∣EP0

[
g
(
x, T̄Qn

)]∣∣ ≤ ∣∣EP0

[
g
(
x, T̄Qn

)]− EQn

[
gn
(
x, T̄Qn

)]∣∣+ ∣∣EQn

[
gn
(
x, T̄Qn

)]∣∣→ 0.

The conclusion follows from Assumption 3.1 (iii).

Lemma A.2. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n),

(A.5)
√
n
(
T̄Qn − θ0

)
= −√

nΣ−1

ˆ
ΛndQn + o (1) .

Proof. The proof is based on Rieder (1994, proofs of Theorems 6.3.4 and Theorem 6.4.5). Pick

arbitrary r > 0 and Qn ∈ BH (P0, r/
√
n). Observe that

∥∥∥∥dQ1/2
n − dP̄

1/2
θ0,Qn

+
1

2

(
T̄Qn − θ0

)′
ΛndQ

1/2
n

∥∥∥∥
2

=

∥∥∥∥dQ1/2
n − dP̄

1/2
θ0,Qn

+
1

2
ψ′
n,Qn

ΛndQ
1/2
n

∥∥∥∥
2

+

∥∥∥∥12 (T̄Qn − θ0 − ψn,Qn

)′
ΛndQ

1/2
n

∥∥∥∥
2

+

{ˆ (
dQ1/2

n − dP̄
1/2
θ0,Qn

+
1

2
ψ′
n,Qn

ΛndQ
1/2
n

)
Λ′
ndQ

1/2
n

}(
T̄Qn − θ0 − ψn,Qn

)

=

∥∥∥∥dQ1/2
n − dP̄

1/2
θ0,Qn

+
1

2
ψ′
n,Qn

ΛndQ
1/2
n

∥∥∥∥
2

+

∥∥∥∥12 (T̄Qn − θ0 − ψn,Qn

)′
ΛndQ

1/2
n

∥∥∥∥
2

,(A.6)

where the second equality follows from

ˆ {
dQ1/2

n − dP̄
1/2
θ0,Qn

+
1

2
ψ′
n,Qn

ΛndQ
1/2
n

}
Λ′
ndQ

1/2
n

=

ˆ
Λ′
n

{
dQ1/2

n − dP̄
1/2
θ0,Qn

}
dQ1/2

n +
1

2
ψ′
n,Qn

ˆ
ΛnΛ

′
ndQn = 0.
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The left hand side of (A.6) satisfies

∥∥∥∥dQ1/2
n − dP̄

1/2
θ0,Qn

+
1

2

(
T̄Qn − θ0

)′
ΛndQ

1/2
n

∥∥∥∥
≤

∥∥∥dQ1/2
n − dP̄

1/2

T̄Qn ,Qn

∥∥∥+ o
(∣∣T̄Qn − θ0

∣∣)+ o
(
n−1/2

)
≤

∥∥∥dQ1/2
n − dP̄

1/2
θ0+ψn,Qn ,Qn

∥∥∥+ o
(∣∣T̄Qn − θ0

∣∣)+ o
(
n−1/2

)
≤

∥∥∥∥dQ1/2
n − dP̄

1/2
θ0,Qn

+
1

2
ψ′
n,Qn

ΛndQ
1/2
n

∥∥∥∥+ o
(∣∣T̄Qn − θ0

∣∣)+ o (|ψn,Qn|) + o
(
n−1/2

)
,(A.7)

where the first inequality follows from the triangle inequality and Lemma A.3 (i), the second inequality

follows from T̄Qn = argminθ∈Θ
∥∥∥dQ1/2

n − dP̄
1/2
θ,Qn

∥∥∥, and the third inequality follows from the triangle

inequality and Lemma A.3 (ii). From (A.6) and (A.7),

∣∣∣∣∣
∥∥∥∥dQ1/2

n − dP̄
1/2
θ0,Qn

+
1

2
ψ′
n,Qn

ΛndQ
1/2
n

∥∥∥∥
2

+

∥∥∥∥12 (T̄Qn − θ0 − ψn,Qn

)′
ΛndQ

1/2
n

∥∥∥∥
2
∣∣∣∣∣
1/2

≤
∥∥∥∥dQ1/2

n − dP̄
1/2
θ0,Qn

+
1

2
ψ′
n,Qn

ΛndQ
1/2
n

∥∥∥∥+ o
(∣∣T̄Qn − θ0

∣∣)+ o (|ψn,Qn|) + o
(
n−1/2

)
.

This implies

o
(∣∣T̄Qn − θ0

∣∣)+ o (|ψn,Qn |) + o
(
n−1/2

)

≥
√

1

4

(
T̄Qn − θ0 − ψn,Qn

)′ ˆ
ΛnΛ′

ndQn
(
T̄Qn − θ0 − ψn,Qn

) ≥ C
∣∣T̄Qn − θ0 − ψn,Qn

∣∣ ,(A.8)

for all n large enough, where the second inequality follows from Lemma A.5 (i) and Assumption 3.1

(vi).

We now analyze ψn,Qn. From the definition of ψn,Qn ,

ψn,Qn = −2

{(ˆ
ΛnΛ

′
ndQn

)−1

− Σ−1

} ˆ
Λn

{
dQ1/2

n − dP̄
1/2
θ0,Qn

}
dQ1/2

n

−2Σ−1

ˆ
Λn

{
dQ1/2

n − dP̄
1/2
θ0,Qn

}
dQ1/2

n .(A.9)
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From this and Lemma A.5 (i), the first term of (A.9) is o
(
n−1/2

)
. The second term of (A.9) satisfies

−2Σ−1

ˆ
Λn

{
dQ1/2

n − dP̄
1/2
θ0,Qn

}
dQ1/2

n

= −2Σ−1G′Ω−1

(ˆ
gn (x, θ0) gn (x, θ0)

′ dQn
)
γn (θ0, Qn)

+2Σ−1G′Ω−1

(ˆ
γn (θ0, Qn)

′ gn (x, θ0)
1 + γn (θ0, Qn)

′ gn (x, θ0)
gn (x, θ0) gn (x, θ0)

′ dQn
)
γn (θ0, Qn)

= −Σ−1G′Ω−1

{ˆ
gn (x, θ0) dQn +

1

2

ˆ
�n (x, θ0, Qn) gn (x, θ0) dQn

}
+ o

(
n−1/2

)

= −Σ−1

ˆ
ΛndQn + o

(
n−1/2

)
,

where the first equality follows from (A.10), the second equality follows from (A.11) and Lemma A.5,

and the third equality follows from Lemma A.5. Therefore,

√
nψn,Qn = −√

nΣ−1

ˆ
ΛndQn + o (1) ,

which also implies |ψn,Qn | = O
(
n−1/2

)
(by Lemma A.5 (i)). Combining this with (A.8),

√
n
(
T̄Qn − θ0

)
=

√
nψn,Qn + o

(√
n
∣∣T̄Qn − θ0

∣∣)+ o (1) .

By solving this equation for
√
n
(
T̄Qn − θ0

)
, the conclusion is obtained.

Lemma A.3. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n),

(i):
∥∥∥dP̄ 1/2

T̄Qn ,Qn
− dP̄

1/2
θ0,Qn

+ 1
2

(
T̄Qn − θ0

)′
ΛndQ

1/2
n

∥∥∥ = o
(∣∣T̄Qn − θ0

∣∣)+ o
(
n−1/2

)
,

(ii):
∥∥∥dP̄ 1/2

θ0+ψn,Qn ,Qn
− dP̄

1/2
θ0,Qn

+ 1
2ψ

′
n,Qn

ΛndQ
1/2
n

∥∥∥ = o (|ψn,Qn|) + o
(
n−1/2

)
.

Proof of (i). From the convex duality of partially finite programming (Borwein and Lewis (1993)),

the Radon-Nikodym derivative dP̄θ,Q/dQ is written as

(A.10)
dP̄θ,Q
dQ

=
1(

1 + γn (θ,Q)′ gn (x, θ)
)2 ,

for each n ∈ N, θ ∈ Θ, and Q ∈ M, where γn (θ,Q) solves

(A.11) 0 =

ˆ
gn (x, θ)(

1 + γn (θ,Q)′ gn (x, θ)
)2dQ = EQ

[
gn (x, θ)

{
1− 2γn (θ,Q)′ gn (x, θ) + �n (x, θ,Q)

}]
,

with

�n (x, θ,Q) =
3
(
γn (θ,Q)′ gn (x, θ)

)2
+ 2 (γn(θ,Q)′gn (x, θ))3(

1 + γn (θ,Q)′ gn (x, θ)
)2 .
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Denote tn = T̄Qn − θ0. Pick arbitrary r > 0 and sequence Qn ∈ BH (P0, r/
√
n). From the triangle

inequality and (A.10),∥∥∥∥dP̄ 1/2

T̄Qn ,Qn
− dP̄

1/2
θ0,Qn

+
1

2
t′nΛndQ

1/2
n

∥∥∥∥
≤

∥∥∥∥{γn (θ0, Qn)′ gn (x, θ0)− γn
(
T̄Qn , Qn

)′
gn
(
x, T̄Qn

)}
dQ1/2

n +
1

2
t′nΛndQ

1/2
n

∥∥∥∥

+

∥∥∥∥∥∥∥∥

{
γn (θ0, Qn)

′ gn (x, θ0)− γn
(
T̄Qn , Qn

)′
gn
(
x, T̄Qn

)}
×
{

1(
1+γn(T̄Qn ,Qn)

′
gn(x,T̄Qn)

)
(1+γn(θ0,Qn)

′gn(x,θ0))
− 1

}
dQ

1/2
n

∥∥∥∥∥∥∥∥
= T1 + T2.

For T2, Lemmas A.5 and A.6 imply T2 = o
(
n−1/2

)
. For T1, the triangle inequality and (A.11) yield

T1 ≤
∥∥∥∥∥∥
⎧⎨
⎩ −1

2EQn

[
gn
(
x, T̄Qn

)]′
EQn

[
gn
(
x, T̄Qn

)
gn
(
x, T̄Qn

)′]−1
gn
(
x, T̄Qn

)
+1

2EQn [gn (x, θ0)]
′EQn

[
gn (x, θ0) gn (x, θ0)

′]−1
gn (x, θ0) +

1
2t

′
nΛn

⎫⎬
⎭ dQ1/2

n

∥∥∥∥∥∥
+
∥∥∥EQn [�n (x, θ0, Qn) gn (x, θ0)]

′EQn

[
gn (x, θ0) gn (x, θ0)

′]−1
gn (x, θ0) dQ

1/2
n

∥∥∥
+

∥∥∥∥EQn

[
�n
(
x, T̄Qn , Qn

)
gn
(
x, T̄Qn

)]′
EQn

[
gn
(
x, T̄Qn

)
gn
(
x, T̄Qn

)′]−1
gn (x, θ0) dQ

1/2
n

∥∥∥∥
= T11 + T12 + T13.

Lemmas A.5 and A.6 imply that T12 = o
(
n−1/2

)
and T13 = o

(
n−1/2

)
. For T11, expansions of

gn
(
x, T̄Qn

)
around T̄Qn = θ0 yield

T11 ≤
∥∥∥∥∥∥−

1

2
EQn

[
gn
(
x, T̄Qn

)]′⎛⎝ EQn

[
gn
(
x, T̄Qn

)
gn
(
x, T̄Qn

)′]−1

−EQn

[
gn (x, θ0) gn (x, θ0)

′]−1

⎞
⎠ gn

(
x, T̄Qn

)
dQ1/2

n

∥∥∥∥∥∥
+

∥∥∥∥−1

2
EQn

[
gn
(
x, T̄Qn

)]′
EQn

[
gn (x, θ0) gn (x, θ0)

′]−1 {
gn
(
x, T̄Qn

)− gn (x, θ0)
}
dQ1/2

n

∥∥∥∥
+

∥∥∥∥∥∥∥−
1

2
t′n

⎛
⎝ˆ ∂gn

(
x, θ̇
)

∂θ′
dQn −G

⎞
⎠

′

EQn

[
gn (x, θ0) gn (x, θ0)

′]−1
gn (x, θ0) dQ

1/2
n

∥∥∥∥∥∥∥
+

∥∥∥∥12t′nG′
(
Ω−1 − EQn

[
gn (x, θ0) gn (x, θ0)

′]−1
)
gn (x, θ0) dQ

1/2
n

∥∥∥∥
= o

(
n−1/2

)
+ o (tn) ,

where θ̇ is a point on the line joining θ0 and T̄Qn , and the equality follows from Lemmas A.5 (i) and

A.6 (i).

Proof of (ii). Similar to the proof of Part (i) of this lemma.
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Lemma A.4. Suppose that Assumption 3.1 hold. Then for each t ∈ R
p,

(i): |EP0 [gn (x, θ0)]| = o
(
n−1/2

)
, |EP0 [gn (x, θn)]| = O

(
n−1/2

)
,
∣∣EP0

[
gn (x, θn) gn (x, θn)

′]− Ω
∣∣ =

o (1), and |EP0 [∂gn (x, θn) /∂θ
′]−G| = o (1),

(ii): γn (θn, P0) = argmaxγ∈Rm − ´ 1
(1+γ′gn(x,θn))dP0 exists for all n large enough, |γn (θn, P0)| =

O
(
n−1/2

)
, and supx∈X

∣∣γn (θn, P0)
′ gn (x, θn)

∣∣ = o (1).

Proof of (i). Proof of the first statement. The same argument as (A.4) with Assumption 3.1

(iii) yields the conclusion.

Proof of the second statement. Pick an arbitrary t ∈ R
p. From the triangle inequality,

(A.12) |EP0 [gn (x, θn)]| ≤ |EP0 [g (x, θn) I {x /∈ Xn}]|+ |EP0 [g (x, θn)]| .

By the same argument as (A.4) and EP0 [|g (x, θn)|η] < ∞ (from Assumption 3.1 (v)), the first term

of (A.12) is o
(
n−1/2

)
. The second term of (A.12) satisfies

|EP0 [g (x, θn)]| ≤ EP0

[
sup
θ∈N

∣∣∣∣∂g (x, θ)∂θ′

∣∣∣∣
] ∣∣∣∣ t√n

∣∣∣∣ = O
(
n−1/2

)
,

for all n large enough, where the inequality follows from a Taylor expansion around t = 0 and

Assumption 3.1 (iii), and the equality follows from Assumption 3.1 (v). Combining these results, the

conclusion is obtained.

Proof of the third statement. Pick an arbitrary t ∈ R
p. From the triangle inequality,

∣∣EP0

[
gn (x, θn) gn (x, θn)

′]− Ω
∣∣

≤ ∣∣EP0

[
gn (x, θn) gn (x, θn)

′]− EP0

[
g (x, θn) g (x, θn)

′]∣∣+ ∣∣EP0

[
g (x, θn) g (x, θn)

′]− Ω
∣∣ .

The first term is o
(
n−1/2

)
by the same argument as (A.4) and the second term converges to zero by

the continuity of g (x, θ) at θ0.

Proof of the fourth statement. Similar to the proof of the third statement.

Proof of (ii). Pick an arbitrary t ∈ R
p. Let Γn = {γ ∈ R

m : |γ| ≤ an} with a positive sequence

{an}n∈N satisfying anmn → 0 and ann
1/2 → ∞. Observe that

(A.13) sup
γ∈Γn,x∈X ,θ∈Θ

∣∣γ′gn (x, θ)∣∣ ≤ anmn → 0.



A-16 YUICHI KITAMURA, TAISUKE OTSU, AND KIRILL EVDOKIMOV

Since Rn (P0, θn, γ) is twice continuously differentiable with respect to γ and Γn is compact, γ̃ =

argmaxγ∈Γn Rn (P0, θn, γ) exists for each n ∈ N. A Taylor expansion around γ̃ = 0 yields

− 1 = Rn (P0, θn, 0) ≤ Rn (P0, θn, γ̃) = −1 + γ̃′EP0 [gn (x, θn)]− γ̃′EP0

[
gn (x, θn) gn (x, θn)

′

(1 + γ̇′gn (x, θn))3

]
γ̃

≤ −1 + γ̃′EP0 [gn (x, θn)]− Cγ̃′EP0

[
gn (x, θn) gn (x, θn)

′] γ̃
≤ −1 + |γ̃| |EP0 [gn (x, θn)]| − C |γ̃|2 ,(A.14)

for all n large enough, where γ̇ is a point on the line joining 0 and γ̃, the second inequality follows from

(A.13), and the last inequality follows from Lemma A.4 (i) and Assumption 3.1 (vi). Thus, Lemma

A.4 (i) implies

(A.15) C |γ̃| ≤ |EP0 [gn (x, θn)]| = O
(
n−1/2

)
.

From ann
1/2 → ∞, γ̃ is an interior point of Γn and satisfies the first-order condition ∂Rn (Qn, θ0, γ̃) /∂γ =

0 for all n large enough. SinceRn (Qn, θ0, γ) is concave in γ for all n large enough, γ̃ = argmaxγ∈Rm Rn (P0, θn, γ)

for all n large enough and the first statement is obtained. Thus, the second statement is obtained

from (A.15). The third statement follows from (A.15) and Assumption 3.1 (vii).

Lemma A.5. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n),

(i): |EQn [gn (x, θ0)]| = O
(
n−1/2

)
, and

∣∣EQn

[
gn (x, θ0) gn (x, θ0)

′]−Ω
∣∣ = o (1),

(ii): γn (θ0, Qn) = argmaxγ∈Rm − ´ 1
(1+γ′gn(x,θ0))dQn exists for all n large enough, and |γn (θ0, Qn)| =

O
(
n−1/2

)
, and supx∈X

∣∣γn (θ0, Qn)′ gn (x, θ0)∣∣ = o (1).

Proof of (i). Proof of the first statement. Pick any r > 0 and sequence Qn ∈ BH (P0, r/
√
n).

We have

|EQn [gn (x, θ0)]|

≤
∣∣∣∣
ˆ
gn (x, θ0) {dQn − dP0}

∣∣∣∣+ |EP0 [gn (x, θ0)]|

≤
∣∣∣∣
ˆ
gn (x, θ0)

{
dQ1/2

n − dP
1/2
0

}2
∣∣∣∣+ 2

∣∣∣∣
ˆ
gn (x, θ0) dP

1/2
0

{
dQ1/2

n − dP
1/2
0

}∣∣∣∣+ o
(
n−1/2

)

≤ mn
r2

n
+ 2EP0

[
|g (x, θ0)|2

] r√
n
+ o

(
n−1/2

)
= O

(
n−1/2

)
,

where the first and second inequalities follow from the triangle inequality and Lemma A.4 (i), the

third inequality follows from the Cauchy-Schwarz inequality andQn ∈ BH (P0, r/
√
n), and the equality

follows from Assumption 3.1 (v) and (vii).
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Proof of the second statement. Pick arbitrary r > 0 and sequence Qn ∈ BH (P0, r/
√
n). From

the triangle inequality,

∣∣EQn

[
gn (x, θ0) gn (x, θ0)

′]− Ω
∣∣(A.16)

≤ ∣∣EQn

[
gn (x, θ0) gn (x, θ0)

′]− EP0

[
gn (x, θ0) gn (x, θ0)

′]∣∣+ ∣∣EP0

[
g (x, θ0) g (x, θ0)

′
I {x /∈ Xn}

]∣∣ .
The first term of the RHS of (A.16) satisfies

∣∣EQn

[
gn (x, θ0) gn (x, θ0)

′]−EP0

[
gn (x, θ0) gn (x, θ0)

′]∣∣
≤

∣∣∣∣
ˆ
gn (x, θ0) gn (x, θ0)

′
{
dQ1/2

n − dP
1/2
0

}2
∣∣∣∣+ 2

∣∣∣∣
ˆ
gn (x, θ0) gn (x, θ0)

′ dP 1/2
0

{
dQ1/2

n − dP
1/2
0

}∣∣∣∣
≤ m2

n

r2

n
+ 2EP0

[
|g (x, θ0)|4

] r√
n
= o (1) ,

where the first inequality follows from the triangle inequality, the second inequality follows from the

Cauchy-Schwarz inequality and Qn ∈ BH (P0, r/
√
n), and the equality follows from Assumption 3.1

(v) and (vii). The second term of (A.16) satisfies

∣∣EP0

[
g (x, θ0) g (x, θ0)

′
I {x /∈ Xn}

]∣∣
≤

(ˆ ∣∣g (x, θ0) g (x, θ0)′∣∣1+δ dP0

) 1
1+δ
(ˆ

I {x /∈ Xn} dP0

) δ
1+δ

≤
(
EP0

[
|g (x, θ0)|2+δ

]) 1
1+δ (

m−η
n EP0 [|g (x, θ0)|η]

) δ
1+δ = o (1) ,

for sufficiently small δ > 0, where the first inequality follows from the Hölder inequality, the second

inequality follows from the Markov inequality, and the equality follows from Assumption 3.1 (vii).

Proof of (ii). Similar to the proof of Lemma A.4 (ii). Repeat the same argument with Rn (Qn, θ0, γ)

instead of Rn (P0, θn, γ).

Lemma A.6. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n),

(i):
∣∣EQn

[
gn
(
x, T̄Qn

)]∣∣ = O
(
n−1/2

)
,
∣∣∣EQn

[
gn
(
x, T̄Qn

)
gn
(
x, T̄Qn

)′]− Ω
∣∣∣ = o (1), and∣∣EQn

[
∂gn

(
x, T̄Qn

)
/∂θ′

]−G
∣∣ = o (1),

(ii): γn
(
T̄Qn , Qn

)
= argmaxγ∈Rm − ´ 1

(1+γ′gn(x,T̄Qn))
dQn exists for all n large enough,

∣∣γn (T̄Qn , Qn
)∣∣ =

O
(
n−1/2

)
, and supx∈X

∣∣∣γn (T̄Qn , Qn
)′
gn
(
x, T̄Qn

)∣∣∣ = o (1).

Proof of (i). Proof of the first statement. Pick any r > 0 and sequence Qn ∈ BH (P0, r/
√
n).

Define γ̃ =
EQn [gn(x,T̄Qn)]√
n|EQn [gn(x,T̄Qn)]| . Since |γ̃| = n−1/2,

(A.17) sup
x∈X ,θ∈Θ

∣∣γ̃′gn (x, θ)∣∣ ≤ n−1/2mn → 0.
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Observe that

∣∣∣EQn

[
gn
(
x, T̄Qn

)
gn
(
x, T̄Qn

)′]∣∣∣
(A.18)

≤
ˆ

sup
θ∈Θ

|gn (x, θ)|2
{
dQ1/2

n − dP
1/2
0

}2
+ 2

ˆ
sup
θ∈Θ

|gn (x, θ)|2 dP 1/2
0

{
dQ1/2

n − dP
1/2
0

}
+ EP0

[
sup
θ∈Θ

|gn (x, θ)|2
]

≤m2
n
r2

n
+ 2mn

√
EP0

[
sup
θ∈Θ

|g (x, θ)|2
]
r√
n
+ EP0

[
sup
θ∈Θ

|g (x, θ)|2
]
≤ CEP0

[
sup
θ∈Θ

|g (x, θ)|2
]
,

for all n large enough, where the first inequality follows from the triangle inequality, the second in-

equality follows from the Cauchy-Schwarz inequality and Qn ∈ BH (P0, r/
√
n), and the last inequality

follows from Assumption 3.1 (v) and (vii). Thus, an expansion around γ̃ = 0 yields

Rn
(
Qn, T̄Qn , γ̃

)
= −1 + γ̃′EQn

[
gn
(
x, T̄Qn

)]− γ̃′EQn

[
gn
(
x, T̄Qn

)
gn
(
x, T̄Qn

)′(
1 + γ̇′gn

(
x, T̄Qn

))3
]
γ̃

≥ −1 + n−1/2
∣∣EQn

[
gn
(
x, T̄Qn

)]∣∣− Cγ̃′EQn

[
gn
(
x, T̄Qn

)
gn
(
x, T̄Qn

)′]
γ̃

≥ −1 + n−1/2
∣∣EQn

[
gn
(
x, T̄Qn

)]∣∣− Cn−1,(A.19)

for all n large enough, where γ̇ is a point on the line joining 0 and γ̃, the first inequality follows from

(A.17), and the second inequality follows from γ̃′γ̃ = n−1 and (A.18). From the duality of partially

finite programming (Borwein and Lewis (1993)), γn
(
T̄Qn , Qn

)
and T̄Qn are written as γn

(
T̄Qn , Qn

)
=

argmaxγ∈Rm Rn
(
Qn, T̄Qn , γ

)
and T̄Qn = argminθ∈ΘRn (Qn, θ, γn (θ,Qn)). Therefore, from (A.19),

−1 + n−1/2
∣∣EQn

[
gn
(
x, T̄Qn

)]∣∣− Cn−1

≤ Rn
(
Qn, T̄Qn , γ̃

) ≤ Rn
(
Qn, T̄Qn , γn

(
T̄Qn , Qn

)) ≤ Rn (Qn, θ0, γn (θ0, Qn)) .(A.20)

By a similar argument to (A.14) combined with |γn (θ0, Qn)| = O
(
n−1/2

)
and |EQn [gn (x, θ0)]| =

O
(
n−1/2

)
(by Lemma A.5), we have

(A.21)

Rn (Qn, θ0, γn (θ0, Qn)) ≤ −1 + |γn (θ0, Qn)| |EQn [gn (x, θ0)]| − C |γn (θ0, Qn)|2 = −1 +O
(
n−1

)
.

From (A.20) and (A.21), the conclusion follows.

Proof of the second statement. Similar to the proof of the second statement of Lemma A.5 (i).
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Proof of the third statement. Pick arbitrary r > 0 and sequence Qn ∈ BH (P0, r/
√
n). From the

triangle inequality,

∣∣EQn

[
∂gn

(
x, T̄Qn

)
/∂θ′

]−G
∣∣ ≤ ∣∣EQn

[
∂gn

(
x, T̄Qn

)
/∂θ′

]− EP0

[
∂gn

(
x, T̄Qn

)
/∂θ′

]∣∣
+
∣∣EP0

[
I {x /∈ Xn} ∂g

(
x, T̄Qn

)
/∂θ′

]∣∣+ ∣∣EP0

[
∂g
(
x, T̄Qn

)
/∂θ′

]−G
∣∣ .(A.22)

The first term of (A.22) satisfies

∣∣EQn

[
∂gn

(
x, T̄Qn

)
/∂θ′

]− EP0

[
∂gn

(
x, T̄Qn

)
/∂θ′

]∣∣
≤

∣∣∣∣
ˆ
∂gn

(
x, T̄Qn

)
/∂θ′

{
dQ1/2

n − dP
1/2
0

}2
∣∣∣∣+ 2

∣∣∣∣
ˆ
∂gn

(
x, T̄Qn

)
/∂θ′dP 1/2

0

{
dQ1/2

n − dP
1/2
0

}∣∣∣∣
≤ sup

x∈Xn,θ∈N

∣∣∂gn (x, θ) /∂θ′∣∣ r2
n

+ 2EP0

[
sup
θ∈N

∣∣∂gn (x, θ) /∂θ′∣∣2
]
r√
n
= o (1) ,

where the first inequality follows from the triangle inequality, the second inequality follows from the

Cauchy-Schwarz inequality, and the equality follows from Assumption 3.1 (v) and (vii). The second

term of (A.22) is o (1) by the same argument as (A.4). The third term of (A.22) is o (1) by the

continuity of ∂g (x, θ) /∂θ′ at θ0 and Lemma A.1 (ii). Therefore, the conclusion is obtained.

Proof of (ii). Similar to the proof of Lemma A.4 (ii). Repeat the same argument withRn
(
Qn, T̄Qn , γ

)
instead of Rn (P0, θn, γ).

Lemma A.7. Suppose that Assumption 3.1 holds. Then for each sequence Qn ∈ BH (P0, r/
√
n) and

r > 0, T̄Pn

p→ θ0 under Qn.

Proof. Similar to the proof of Lemma A.1 (i).

Lemma A.8. Suppose that Assumption 3.1 holds . Then for each r > 0 and sequence Qn ∈
BH (P0, r/

√
n),

√
n
(
T̄Pn − θ0

)
= −√

nΣ−1

ˆ
ΛndPn + op (1) under Qn,

√
n
(
T̄Pn − T̄Qn

) d→ N
(
0,Σ−1

)
under Qn.

Proof. The proof of the first statement is similar to that of Lemma A.2 (replace Qn with Pn and use

Lemmas A.9 and A.10 instead of Lemmas A.5 and A.6). For the second statement, Lemma A.2 and

the first statement imply

√
n
(
T̄Pn − T̄Qn

)
= −Σ−1G′Ω−1 1√

n

n∑
i=1

{gn (xi, θ0)− EQn [gn (x, θ0)]}+ op (1) ,
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under Qn. Thus, it is sufficient to check that we can apply a central limit theorem to the triangular

array {gn (xi, θ0)}1≤i≤n,n. Observe that

EQn

[
|gn (x, θ0)|2+ε

]
=

ˆ
|gn (x, θ0)|2+ε

{
dQ1/2

n − dP
1/2
0

}2
+ 2

ˆ
|gn (x, θ0)|2+ε dP 1/2

0

{
dQ1/2

n − dP
1/2
0

}
+ EP0

[
|gn (x, θ0)|2+ε

]

≤ m2+ε
n

r2

n
+ 2m1+ε

n EP0

[
|g (x, θ0)|2

] r√
n
+ EP0

[
|g (x, θ0)|2+ε

]
<∞,

for all n large enough, where the first inequality follows from the Cauchy-Schwarz inequality, and the

second inequality follows from Assumption 3.1 (v) and (vii). Therefore, the conclusion is obtained.

Lemma A.9. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n),

the followings hold under Qn:

(i): |EPn [gn (x, θ0)]| = Op
(
n−1/2

)
,
∣∣EPn

[
gn (x, θ0) gn (x, θ0)

′]− Ω
∣∣ = op (1),

(ii): γn (θ0, Pn) = argmaxγ∈Rm − ´ 1
(1+γ′gn(x,θ0))dPn exists a.s. for all n large enough, |γn (θ0, Pn)| =

Op
(
n−1/2

)
, and supx∈X

∣∣γn (θ0, Pn)′ gn (x, θ0)∣∣ = op (1).

Proof of (i). Proof of the first statement. From the triangle inequality,

|EPn [gn (x, θ0)]| ≤ |EPn [gn (x, θ0)]− EQn [gn (x, θ0)]|+ |EQn [gn (x, θ0)]| .

The first term is Op
(
n−1/2

)
by the central limit theorem for the triangular array {gn (xi, θ0)}1≤i≤n,n.

The second term is O
(
n−1/2

)
by Lemma A.5 (i).

Proof of the second statement. From the triangle inequality,

∣∣EPn

[
gn (x, θ0) gn (x, θ0)

′ − Ω
]∣∣

≤ ∣∣EPn

[
gn (x, θ0) gn (x, θ0)

′]− EQn

[
gn (x, θ0) gn (x, θ0)

′]∣∣+ ∣∣EQn

[
gn (x, θ0) gn (x, θ0)

′]− Ω
∣∣ .

From a law of large numbers, the first term is op (1). From Lemma A.5 (i), the second term is o (1).

Proof of (ii). Similar to the proof of Lemma A.4 (ii) except using Lemma A.9 (i) instead of Lemma

A.4 (i).

Lemma A.10. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈
BH (P0, r/

√
n), the followings hold under Qn:

(i):
∣∣EPn

[
gn
(
x, T̄Pn

)]∣∣ = Op
(
n−1/2

)
,
∣∣∣EPn

[
gn
(
x, T̄Pn

)
gn
(
x, T̄Pn

)′]− Ω
∣∣∣ = Op

(
n−1/2

)
, and∣∣EPn

[
∂gn

(
x, T̄Pn

)
/∂θ′

]−G
∣∣ = op (1),
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(ii): γn
(
T̄Pn , Pn

)
= argmaxγ∈Rm − ´ 1

(1+γ′gn(x,T̄Pn))
dPn exists a.s. for all n large enough,

∣∣γn (T̄PnPn
)∣∣ =

Op
(
n−1/2

)
, and supx∈X

∣∣∣γn (T̄Pn , Pn
)′
gn
(
x, T̄Pn

)∣∣∣ = op (1).

Proof of (i). Similar to the proof of Lemma A.6 (i).

Proof of (ii). Similar to the proof of Lemma A.6 (ii).
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