SUPPLEMENTAL APPENDIX FOR “ROBUSTNESS, INFINITESIMAL
NEIGHBORHOODS, AND MOMENT RESTRICTIONS”

YUICHI KITAMURA, TAISUKE OTSU, AND KIRILL EVDOKIMOV

A.1. PROOFS OF MAIN RESULTS

This Appendix presents the proofs of some of the results presented in the previous sections.
A.1.1. Proof of Lemma [2.T. We first show the claim for o < %, that is,
1

Let Hy(z) =+ (1—2%)—2(1— 3 , 0 <z < oo, then the above inequality becomes
[}

(A.2) / H, (§> qdv > 0.

Note
>0 ifx>1
% a(@)=—2""4272 0 ifr=1
<0 ifx<l1.
The above holds for the case with o = 0 as well, since Hy(z) = —logz — 2 (1 — :):%> Moreover,

H, (1) = 0. Therefore H, (z) > 0 for all z > 0, and the desired inequality ([A.2]) follows immediately.

Next, we prove the case with o > %, that is,

al, (PuQ) > =1

(P,Q).

1
2

N —

Let f=1—-a< %, then the above inequality becomes

1
By (A.d) and the symmetry of the Hellinger distance,
1 1
(1= B15(@.P) > 51, (Q.P) = 21, (P.Q).

But the equality I1_g (P, Q) = I3 (Q, P) holds for every 8 € R, and (A.3]) follows.
A-1
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Notation. Let C be a generic positive constant, ||| be the Lo-metric,

0, = 6o+ t/\/ﬁ, TQn =T (Qn) ) TPn =T (PTL) )
_ 1
P, = in H P7 s Rn 707 = -
9,0 arg Jgélp% ( Q) (Q 7) / (1 + 7/gn (.’/U, 0))
gn (,0) = g(x,0)I{zeX,}, A,= G'Q g, (z,6p), A= G'Q g (x, ),

-1
nas = -2 faude,) [, faokr -anf, }aol

A.1.2. Proof of Theorem 3.1l

dQ,

A.1.2.1. Proof of (i). Pick arbitrary r > 0 and ¢ € RP. Consider the following parametric submodel
having the likelihood ratio

dPgmgn - 1+ C;Lgn (.Q?,Hn) B

where
Cn = —Ep, [9(2,00) gn (2,6,)] " Ep, [9(2,6,)].

Note that Py o = Po, Ps,c, € Ps, (by the definition of ¢,), and ¢, = O (n_1/2) (by the proof of
Lemma [A4] (i)). Also, since sup,cy |¢49n (2,6,)| = O (n71/2m,,) = 0(1), the likelihood ratio %
is well-defined for all n large enough. So, for this submodel the mapping T, must satisfy (B1]).

We now evaluate the Hellinger distance between Py, ¢, and Fy. An expansion around ¢, = 0 yields

1., 0%f(x,60,,Co 1/2

¢n=0 Cn:Cn

Of ()0, )2
9

H (P, ¢ Po) = ||¢, GudP 2|

where (, is a point on the line joining ¢, and 0, and

Of (2,0, Cn)
9

_ % {9n (,60) — Ep, [gn (z,60)]} ,

¢n=0

0%f (, 00, ()2
8, 0C,

(14 Cogn (2,60)) > (1+ C.Epy [gn (,02)]) " g (2,60) gn (2,6,

T2 (14 CLERy [0 (,60)]) "% g0 (x,60) Ep, [gn (2, 0))

(L4 Chgn (x,60,))

Y2 (14 CLEp, [gn (2,60)]) " Ep, [gn (,60)] Ep [9n (2, 6,)] -

+
W N =

(14 Crgn (x,60,))
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Thus, a lengthy but straightforward calculation combined with Lemma [A4 ¢, = O (nil/ 2), and

SUPgzex Kq/zgn («T, Hn)’ =0 (1) implies

2

1
(A.5) nH (Py ¢ . P)? =n %g; (gn (2,0,) — Ep, [gn (,0,)]) dP2| +0(1) = L

nan’

Based on this limit, a lower bound of the maximum bias of T, is obtained as (see, Rieder (1994, eq.

(56) on p. 180))

lim inf sup n(roT, (Q)—7 (90))2

"7 QeBy(Por/ Vi)
> 1iniinf sup n (1ol (Pen,Cn) -7 (‘90))2

{tGRP:PQn’gn €By (PO,T/\/H)}

ot (502) 1) =000 (502) = (2552),

for each € € (0, 7“2), where the first inequality follows from the set inclusion relationship, the second

inequality follows from (B.]) and (A.5]), and the equality follows from the Kuhn-Tucker theorem. Since

€ can be arbitrarily small, we obtain the conclusion.

A.1.2.2. Proof of (). Pick arbitrary r > 0 and sequence @, € By (Fo,r/y/n). We first show the
Fisher consistency of T. From Lemma (note: Py, ¢, € Bu (Py,r/+/n) for all n large enough),

Vi (T (Poc)—0)) = —yns™ / AdPy, ¢, +o(1)

= Z—IG/Q—l/ag (:1:,0) /00dPy, ¢, t+o0(1)

— 1

for all n large enough, where 6 is a point on the line joining 6,, and 6, the second equality follows from
[g(x,00)1{z ¢ X,}dPy, ¢, = o(n~Y?) (by a similar argument to (&4)), [ g (v,0,)dPs, ¢, = 0 (by
Py, ¢, € Ps,), and an expansion around #,, = 6y, and the convergence follows from the last statement
of Lemma [A4] (i). Therefore, T is Fisher consistent.

We next show ([BI). An expansion of 7o Ty, around T, = 6y, Lemmas [A]] (ii) and [A:2] and
Assumption B] (viii) imply

Vi (roTg, —7(60) = —vn <a%(990))’ El/AndQn +o(1)

_ _\/ﬁy{)/An {dQ}/2 - dPOI/Q} dQY? — \/nv} /Andpol/2 {dQ}/Q - dPol/Q} Yo(1),
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!/
where we denote 1) = (%) Y. ~!. From the triangle inequality,

n(TOTQn —7‘(90))2

2 2
vh f A {dQ? = Ry b aqil|" + v f An {d@il? - ary*} ary”
vh  An{dQi* - ary?} dQ}ﬂ‘ vh [ A {dQi* - ary*} dP(}/?(
= n{A1+A2—1—2A3}—|—0(1).

+o(1)
+2

For Aj, observe that

A <

l/(/) / AnA;denVO

1/2 1/2) 2 r? .
/{dQn — dp, } <B*= 4o,

n
where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality
follows from Lemma (i) and Q, € By (Po,r/+/n). Similarly, we have As < B*% +o0(n7!) and
Az < B*% +o0 (nil). Combining these terms,

(A.6) limsupn (10 Ty, — T (00))2 < 4r?B*,

n—oo
for any sequence Q,, € By (Py,r/+/n) and r > 0. Pick any r > 0. Since the supremum

sup (Po . >n (ToT(Q) - 7'(90))2 is finite for all n large enough (from Lemma [AT] (i)), there
"V

Q€eBy
exists a sequence Q} € By (Py,r/y/n) such that

lim supn (7‘ o TQZ -7 (00))2 = lim sup sup n (7‘ oT(Q)—1 (00))2 )
n—+00 n—+00 QGBH<P0,ﬁ>

Therefore, the conclusion follows by (AG]).
A.1.3. Proof of Theorem

A.1.3.1. Proof of (i). Pick arbitrary € € (0, T2) and r > 0. Consider the parametric submodel Py, ¢,
defined in (A4)). The convolution theorem (Theorem 25.20 of van der Vaart (1998)) implies that for

each t € RP| there exists a probability measure My which does not depend on ¢ and satisfies
(A7) Vi (10T (Py) —70Ta(Py, ) = Mg+ N (0,B*) under Py, .

Let

. a7 00\ )\’ o7 (00)\ ., / )
- -t My % N (0, B¥) > 0.
t* =arg {tem:;ﬁ;ﬁgﬂ_e} (( 30 ) t] st 55 )t [ &dMox N (0,B") > 0

Since the integral [&dMy * N (0, B*) does not depend on ¢, such t* always exists. From it*’Et* <
r? — e and ([AL), it holds that Py 4/ m . € B (Po,r/y/n) for all n large enough. Also, note that
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Ep, ., [supgeo |9 (x,0)|"] < oo for all n large enough (by sup,ex [¢),gn (2,0,)| = 0 (1) and Assumption
B (v)). Thus, Py, 4+ / mc, € Bu (Po,r/y/n) for all n large enough, and we have

lim liminf sup /b An (1o T, (Py)—7(6)) dQ%"
b—oo n—00 7
QeBy (Por/y/n)

> lim liminf/b/\n(ToTa (P,) — 7 (6p))* dpgzit*/\/ﬁc

b—oo n—o0
2

— lim liminf/b/\n (§+ (87(9°)> t*) dMy = N (0, B*)

b—oo M—00 00
/ 0 /
- et () (280 fan

> {1—|—4(7”2—6)}B*,

2

where the first equality follows from the Fisher consistency of T, (A9]), and the continuous map-
ping theorem, the second equality follows from the monotone convergence theorem, and the second

inequality follows from the definition of t*. Since € can be arbitrarily small, we obtain the conclusion.

A.1.3.2. Proof of (ii). Pick arbitrary » > 0 and b > 0. Applying the inequality b A (¢1 +c2) <
bAci+bAcy for any ¢1,c9 > 0,

lim sup sup / bAn(roT (P,)—7(0))*dQ®"
n—o0 QGBH(PQ,T/\/H)

IN

lim sup sup /b/\n(ToT(Pn) —TOT(Pn))QdQ(X’”
n—o0 QGBH(PQ,T/\/H)

+2lim sup sup /b/\{n|ToT(Pn)—ToT(Pn)‘ |TOT(Pn) —7(90)‘}dQ®”
n=00 QeBy (Po,r/Vn)

+lim sup sup /b An(roT(P,)—T1 (90))2 dQ®™
n—o0 QEBH(PQ,T/\/H)

(AS) = Al + 2A2 =+ A3,

For Al,
A1 < b xlimsup sup / aQ®™
n—00 QEBH(P(),T’/\/E) (xl,...,xn)¢X:ll
< b x limsup sup Z / dQ
n=00 QeBy(Por/vn) i=1 Y Ti¢dn
(AL9) < b x limsup sup nm, "Eq [sup lg (:c,9)|”] =0,
n—00 QEBH(POJ’/\/E) 0cO
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where the first inequality follows from T (P,) = T (P,) for all (x1,...,x,) € X, the second inequality
follows from a set inclusion relation, the third inequality follows from the Markov inequality, and the
equality follows from Assumption B1] (vii) and Eg [supgeg |9 (x,0)]"] < oo for all Q € By (Py,r//n).
Similarly, we have Ay = 0.

We now consider Az. Note that the mapping fon (Q) = [bAn (70T (P,) -7 (90))2 dQ®" is con-
tinuous in Q € By (FPy,r/y/n) under the Hellinger distance for each n, and the set By (FPo,r/v/n)
(not By (Py,r/+/n)) is compact under the Hellinger distance for each n. Thus, there exists Q. €

By (Py,7/+/n) such that SUP Qe By (Pour/y/i) fn(Q) = fn (Qb,n) for each n. Then we have

Az < limsup sup / bAn(roT (P,)—T (90))2 dQ®™
n—o0 QQBH(PO,T’/\/H)

= limsup/b/\n(ToT(Pn)—7(90))2dc~21§2

n—oo

_ /b/\ (€ +1)2 AN (0, BY)

B* + 2

IN

IN

(1+4r%) B*,

where #, = limsupy/n (TOT (Qbm) - 7(6?0)>, the first inequality follows from By (Py,r/y/n) C
n—oo

By (Py,r/+/n), the second equality follows from Lemma (with @, = Q) and the continu-

ous mapping theorem, the second inequality follows from b A ¢ < ¢ and a direct calculation, and the

last inequality follows from Theorem B.] (ii). Combining these results, the conclusion is obtained.
A.1.4. Proof of Theorem 3.3l

A.1.4.1. Proof of (i). Consider the parametric submodel Py, ¢, defined in (A4). Since ¢ is uniformly

continuous on RP (by Assumption 3.2)) and T, is Fisher consistent,

bAL(Vn{S, —ToT, (P, ¢,)}) —bAL (\/E{Sn —7(60)} — <8Ta’(go)) t) — 0,

uniformly in ¢, |t| < ¢ and {Sy, }nen for each ¢ > 0 and b > 0. Thus,

(A.10)
inf oAl (v {S T, (P )dPE" = inf oAl (R o7 (60)\' ) ypen (1
inf sup (Vn{Sn — 70T, (Po,c.)} o ¢, = inf sup n — 20 o ¢, Ho (1),

Sn€eS [t|<c Fn€R |t|<c
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for each ¢ > 0, where R,, = \/n{S,, — 7 (6p)} is a standardized estimator and R = {\/n{S, — 7 (6p)} : S, € S}.

Qn
By expanding the log likelihood ratio log d;;gi” around ¢, = 0,

0

dP;™ "

log —2¢t = 1N g (24,00) — Ep, lgn (,00)]}
dF, et
- G 2oie1 9n (@i, 0n) gn (23, 00) Gn I nGh By [gn (,00)] Epy lgn (2,600)] G
. 2 - 2
2 (1+ Chgn (21, 60) ) 2 (18, f 9o (2.00))
= Li—Ly+ Ls.

where ¢, and ¢, are points on the line joining ¢, and 0. For L1, an expansion of g, (z,0,) (in ()

around 6,, = 6y combined with Lemma [A4] (i) implies that under P,
1 n
Ly =GO —= {gn (2i,0n) — Ep, [gn (z,00)]} + 0p (1) .
vn i=1
Also, Lemma [A 4] (i) and sup,¢cy [, 9n (z,6,)] = 0 (1) imply that under P,
1
Ly & Et'Et, L3 — 0.

Therefore, in the terminology of Rieder (1994, Definition 2.2.9), the parametric model Fy, ¢, is asymp-
totically normal with the asymptotic sufficient statistic —G’Q_lﬁ Yo {gn (xi,0n) — Epy [gn (z,0,)]}
and the asymptotic covariance matrix 3. Note that this is essentially the LAN (local asymptotic nor-
mality) condition introduced by LeCam. If Py, ¢, is asymptotically normal in this sense, we can

directly apply the result of the minimax risk bound by Rieder (1994, Theorem 3.3.8 (a)), that is

/
(A.11) lim lim liminf inf sup / bAL (Rn - <8T (90)) t) APy, > / (dN (0, B*)

b—00 €00 N300 S, €S |y<c 00

(see also Theorem 1 in LeCam and Yang (1990)). From (AJ0) and (AII),

lim lim liminf inf sup/bM(\/ﬁ{Sn—ToTa (Po,.c.)}) APy > /sz (0, B*).

b—ooc—0o0 n—oo S,eS |t‘§0
Finally, since Ep, . [supgee |9 (2,0)|"] < oo for all n large enough (by sup,ey [(,9n (z,0,)] = o(1)
and Assumption Bl (v)), we have Py, ¢, € By (Py,r//n) for all t satisfying 1¢/St < r? — e with any

€€ (0, 7“2) and all n large enough. Therefore, the set inclusion relation yields

lim lim liminf inf sup /b Y4 (\/’ﬁ {Sp, — 10T, (Q)}) dQ®"
b—oor—o0 n—oo S,eS QEBH(PO,T/\/H)

> lim lim liminf inf sup/bAf(\/ﬁ{Sn—roTa (Py,.c.)}) dP;°

n
b—ooc—00 n—oo S, ES It|<c n>Cn”

which implies the conclusion.
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A.1.4.2. Proof of (ii). Pick arbitrary r > 0 and b > 0. Since T (P,) = T (P,) for all (z1,...,7,) € X",

lim sup /b/\ﬁ(\/ﬁ {TOT(Pn) —TOT(Q)}) Q="

"0 QeB (Posr/vi)

< lim sup / bAL(Vn{ToT (P,) — 70T (Q)})dQ®"
(@150 ) X

n— oo QEBH(POJ’/\/E)
(A.12) + lim sup / bAL(Vn{ToT (P,) — 10T (Q)})dQ™".
e QEBu (Po,r/v/n) /(215 2n) €XT

An argument similar to (A.9) implies that the first term of (AJ2) is zero. From X C X" and
By (Py,r/+/n) C By (Py,7/+/n), the second term of (A12)) is bounded from above by

lim sup /b/\ﬁ(\/ﬁ{ToT(Pn)—ToT(Q)})dQ®”—/b/\édN(O,B*),

" QeBy (Por/vi)
where the equality follows from Lemma [A.8] the uniform continuity of ¢ over R?, and compactness of

By (Py,r/+/n) under the Hellinger distance. Let b — oo and the conclusion follows.

A.2. AUXILIARY LEMMAS

Lemma A.1. Suppose that Assumption [31] holds. Then

(i): for each r >0, T (Q) ewists for all Q € By (Py,r/+/n) and all n large enough,
(ii): Tg, — 6o as n — oo for each r > 0 and sequence Qy,, € By (Po,7//n).

Proof of (i). The proof is split into several steps. Let G (6, Q) be the convex hull of the support of
g (z,0) under x ~ Q.

In the first step, we show 0 € intG (0y, Py). If 0 ¢ G (6p, Py), then we have Ep, [g (x,00)] # 0, which is
a contradiction. Thus, it is enough to show that 0 is not on the boundary of G (6y, Py). Suppose 0 is
indeed on the boundary of G (6y, Py). In this case, we have two cases: (a) there exists a constant m-
vector a # 0 such that a’g > 0 for all g € G (0y, Py) and Py {g € G (0o, Py) : a'g > 0} > 0, or (b) there
exists a # 0 such that a'g = 0 for all g € G (6p, Py). For the case (a), we have a’Ep, [g (x,00)] > 0,
which contradicts with Ep, [g (2,60)] = 0. For the case (b), we have a’Ep, [g (z,00) g (x,60)'] a = 0,
which contradicts with Assumption B.] (vi).

In the second step, we show that for each r» > 0, there exists § > 0 such that 0 € intG (0, Q) for all
|0 —6p| < 6 and all Q € By (Fo,d). Pick any r > 0. From the first step, we can find m + 1 points
{G1,-- -, gm+1} ={9(Z1,00) ,--.,9 (Zm+1,60)} in the support of g (z,0y) under z ~ Py such that 0 is
interior of the convex hull of {g1,...,gm+1}. From the property of the convex hull (Rockafeller, 1970,
Corollary 2.3.1), we can take ¢, > 0 such that for any points {g1,...,gm+1} satisfying |g; — g;| < ¢,
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for j = 1,...,m + 1, the interior of the convex hull of {g1,...,gm+1} contains 0. Let us take any
j = 1,...,m+ 1. For the second step, it is sufficient to show that there exists §; > 0 such that
Q{lg(x,0) —gj| < e} > 0 for all |0 -6y < d; and all Q € By (Fo,d;). Suppose this is false,
ie., for any 6; > 0, we can take a pair (Q;,0;) such that H (Q;, Py) < 0;, |6 — 0| < §;, and
Qj{lg (x,05) — gj| < ¢} =0. Then we have

2
6 = H(Qj, Po) > \//{g(wv)qu } (\/de - \/dPO) = \/P0{|9(5079j) —gjl < e}

On the other hand, by Assumption 3] (iv), the dominated convergence theorem guarantees
Po{lg (z,0;) — gj| < v} = Po{lg (z,600) — gj| < ¢} >0 as 0; — 0.

Since d; can be arbitrarily small, we have a contradiction. This completes the second step.

In the third step, we show that for each r > 0, there exists § > 0 such that R,, (0,Q) = infpcp, pg H (P, Q)
has a minimum on {# € © : |6 — 0y| < 6} for all Q € By (PO, #) and all n large enough. Let us
take § > 0 to satisfy the conclusion of the second step. By Assumption Bl (iv), we can take Nj
to satisfy maxi<j<m+1SUPgeo 9—go|<s |9 (Z5,0)] < mn,. Thus, letting G, (6, Q) be the convex hull
of the support of g, (z,0) under x ~ @, the second step also guarantees that for each r > 0,
there exists 6 > 0 such that 0 € intG, (6,Q) for all |§ —6y| < 6, all Q@ € By (Fp,9), and all
n > Nj. Based on this, the convex duality result in Borwein and Lewis (1993, Theorem 3.4) im-
plies Ry, (0,Q) = sup,cpm — [ WMdQ for all | —6g| < 6, all Q € By (Py,d), and all n > Nj.
Since sup,cgm — [ WMdQ is continuous at all § with |§ — 6y| < 6 (by the maximum theorem),
the Weierstrass theorem completes the third step.

Finally, based on the third step, it is sufficient for the conclusion to show that for every r > 0, there
exists N € N such that Ry, (6o, Q) < infoce:jg—gy|>5 Bn (0,Q) for all n > N and all Q € By (PO, ﬁ)
Pick any 7 > 0. We first derive an upper bound of R, (fp, Q) = sup,cgm — i mdé} From
Lemmal[A5] (i), v, (Ao, Q) = arg maxegm — [ Wl(x,eo))dQ exists and sup, ¢y hn (0o, Q) gn (, 00)| <
% for all n large enough and all Q € Bpy (PO, ﬁ) Thus, by a second-order expansion around

Y (60, Q) = 0, we have
Ry (00,Q) < —1+4+m, (HO,Q)’/gn (z,600) dQ.

Define C* = infpce.g_go>5 | Epy [9 (z,0)]]° / (1 + |Ep, [g (2,0)]]) > 0. From LemmalAHland m,n~1/? —
0, it holds

(A.1) my (R (60, Q) +1) < my

0 00.Q) [ an .00 0] <
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for all n large enough and all Q € By (Po, ﬁ) We now derive a lower bound of R, (6,Q) with
|0 — 6y| > d. Pick any 6 € © such that |§ — 6y| > J, and take any n large enough and Q) € By (PO, #)
to satisfy (AJ). If 0 ¢ G, (0,Q), then R, (0,Q) = +oco. Thus, we concentrate on the case of
0 € Gn (0,Q), which guarantees R, (0,Q) = sup,egm — [ mdQ (Borwein and Lewis, 1993,
Theorem 3.4). Let vo (0) = Ep, [g(x,0)] /(1 + |Ep, [9 (x,0)]]). Observe that

1
>

R, (0,Q) > _/ (1 + mgl’yo (0)/971 (.’/U, 0))

dQ

(0 (0) gu (,0))’
() mi "0 (8) g (x,0))

where the second equality follows from an expansion (¢ (z) € (0,1) for almost every x under Q). From

_ -1 / -2
= —1+m, v (0) /gn(ac,ﬂ)dQ m, /(1—|—t 7dQ,

a similar argument to Lemma [A5] with supycg |70 ()] < 1 and m,, — oo,

0y g, (x,0)) C*
/(Htl(w( ) gn (2,0)) g <<

<
() mn 70 (0) gn (x,0))

sup
0O

m,,~ sup

*

¢ 1
)

4 0cO

[on@oraQ- [gG0)an

for all n large enough and all Q) € By (Po, ﬁ) Combining these results and using the definition of

C*, we obtain

(A.2)

(B (0,Q) +1) > T

in
0€0:10—00|>8
for all n large enough and all Q € By (Po, ﬁ) Therefore, (AJ]) and ([(A-2)) complete the proof of the
final step.
Proof of (ii). Pick arbitrary » > 0 and sequence Q,, € By (Py,r/+/n). From the triangle inequality,
(A.3)
sup |Eq,, [gn (2,0)] — Ep, g (2,0)]| < sup|Eq, [gn (2,0)] — Ep, [gn (x,0)][+sup|Ep, [g (z,0) I{z ¢ Xn}]].
o€ 0eO© 0O

The first term of (A.3]) satisfies

sup |EQ, [gn (x,0)] = Er, [gn (,0)]]

[USC)
2
< sup /gn(x,H) {dQ,l/Q—dPolﬂ} ‘—i—qup /gn(x,H)dPOl/2 {dQ,l/Q—dPOlﬂ}‘
[USC) 0cO
TQ 2 T
< my,—+2,|E 0))?| —= = —1/2
< ot \/ po[sggm(x, M\/ﬁ 0 (n712),

where the first inequality follows from the triangle inequality, the second inequality follows from

Qn € By (Py,r/y/n) and the Cauchy-Schwarz inequality, and the equality follows from Assumption



B (v) and (vii). The second term of (A.3]) satisfies

sup |Ep, [g (z,0) 1{z ¢ X, }]]
90

< (/228’9(9579)\77 dpo)l/” (/H{x ‘) dP0>(n_1)/n

where the first inequality follows from the Holder inequality, and the second inequality follows from
the Markov inequality, and the equality follows from Assumption Bl (v) and (vii). Combining these
results, we obtain the uniform convergence supycg |EQ, (9n (z,0)] — Ep, [9 (z,0)]] — 0. Therefore,

from the triangle inequality and |Eg, [gn (v,70,)]| = O (n~'/2) (Lemma A6 (i),
|Br, [ (2. To)| < |Br, [0 (2. Tau)] — Ea, [on (2. Ta,)]| + | Ba, on (x.Ta,)]| = 0.
The conclusion follows from Assumption B (iii).
Lemma A.2. Suppose that Assumption[3 holds. Then for eachr > 0 and sequence Q,, € By (Po,7/+/1),
(A5) Vit (Tg, — 00) = —y/ms! / AndQ + o0 (1).

Proof. The proof is based on Rieder (1994, proofs of Theorems 6.3.4 and Theorem 6.4.5). Pick
arbitrary r > 0 and Q,, € By (Po,r/y/n). Observe that

_ 1 2

2

_ 1 2 1 -

_ 1 _
+ { / (in/ > —dP, 610/,2Qn + §%,Qn/\nd@3/ 2) A, dQY 2} (Tq, — 00 — ¥nq.)
A6 _ gz —ap? 4 Ly Adl/22 Lr g 'Ad1/22
( . ) - QTL - 907Qn + Ewnan n Qn + 5 ( Qn — Y0~ wTL,Qn) n Qn ’

where the second equality follows from
1/2 pl/2 L, 1/2 L A7 301/2
[ {aaie - arify, + Sun00a@ | wacy

_ 1
= [ {0 —arly, Ya@i + S, [ A =0
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The left hand side of (AG]) satisfies

_ 1 -
QY P l5, + 5 (Ta, — ) AudQl®

< [|dQY? - dp%c/; QnH +0(|Tg, — o) + 0 (n‘lﬂ)
< |aQy2—apr)? o anl H0 ([ Tan = 00]) +o (n,m)
_ 1 _
(A7) <A@ =R + 5¢;,QnAnko/2H +0 (T, = b0]) + o (1¥na.) +o (n77?).

where the first inequality follows from the triangle inequality and Lemmal[A.3] (i), the second inequality

follows from Ty, = argmingeo HdQ}l/ 7 dpel /QQR H, and the third inequality follows from the triangle

inequality and Lemma [A3] (ii). From (A6 and (A1),

911/2

2
1 .
B H§ (Tq, = b0 — ¥nq.) AndQ;/?

_ 1
Hd@%/ 2= dPyo, + 5V @ AndQ)

_ 1 B
< HdQ}ﬂ —dP)/4, + sz,QHAndQ}ﬂH +0(|Ta, — o]) + 0 (. )) +o0 (n?)

This implies

o (|Ta, = o) + 0 ([n.l) + 0 (n712)

| _ _

for all n large enough, where the second inequality follows from Lemma [AH (i) and Assumption B.1]

(vi).

We now analyze 1, g,,. From the definition of v, g,,,

-1
YnQn = —2{( / AnA;dQn> —z—l} / A {aQif? — ap,l?, b dqls?

(A.9) —oxt [, {aQif? - ar, Yol
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From this and Lemma [A7] (i), the first term of (A9) is o (n~'/2). The second term of (A0) satisfies
-1 1/2 pl/2 1/2
—2%) / Ao {dQ}? — aB,/7, 1 Q)

= —QE_IG/Q_I </ 9n ($7 ‘90) gn (%, ‘90)/ dQn) Tn (907 Qn)

—1,v1)—1 'Yn(‘907Qn),gn(x7‘90) ! >
e </1+7n(Go,Qn)'gn(x,eo)g"(x’%)g"(%%) An ) 1 G0 Qo)

= 00 [ 00 @000 aQu + 5 [ 00 (500, Qu) o (2.00) 0Q 40 (n12)
- —Z_I/AndQn—i—o (n_1/2),

where the first equality follows from (A10]), the second equality follows from (A1) and Lemma [A.5]
and the third equality follows from Lemma [A.5l Therefore,

Vittng, =—vas™ [ 8dQu +0(1),
which also implies |1, q,| = O (n~Y/2) (by Lemma (i)). Combining this with (A.S]),
Vi (Tg, —00) = Vg, + o (vVn|Tg, —6o]) +o(1).
By solving this equation for \/n (T Qn — 00), the conclusion is obtained.

Lemma A.3. Suppose that Assumption[31 holds. Then for eachr > 0 and sequence Q,, € By (Po,r/v/n),
o, |y B1/2 51/2 1/ / 12| = _
G): [dPE? o — Py, + % (Ta, —b0) AndQil® | = o ([T, = o)) + 0 (n717%),
.. 51/2 51/2 1/2 _
@): 4Py, o 00— WPora, + 300, Mnd @il = 0 (0.0 1) + 0 (n12).
Proof of (i). From the convex duality of partially finite programming (Borwein and Lewis (1993)),
the Radon-Nikodym derivative dPy o/dQ is written as

dPpo 1
= 5,
dQ (147, (0,Q) g (x,0))
for each n € N, 6 € ©, and Q € M, where ~, (6, Q) solves

(A.10)

A. - 9n (x,0) dQ = Eg [gn (2,0) {1 = 279, (0,Q) gn (,60) + on (2.0, ,
(A11) 0 /(H%(w),gnw))? Q = Fg [gn (2,0) {1 - 29, (0,Q) gn (,0) + 0n (2,0,Q)}]
with
! 2 / 3
00 (2.0.0) = 3 (7 (0,Q) gn (,0))” 4 2 (7a(0,Q) gn (x,0)) ‘

(1 + 7. (0,Q) gn (x, 0))2
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Denote t, = Tg, — 0. Pick arbitrary r > 0 and sequence Q,, € By (Py,r/y/n). From the triangle
inequality and (A.10]),

~1/2 ~1/2 1 1/2
Hdp T, 0n — a0, + 5t ndQy/

_ _ 1
< H {'Yn (907 Qn)/gn (xa 90) —Tn (TQn7 Qn)/gn (xa TQn) } qulzﬂ + Et%AndQ}zﬂ

{7n (007 Qn)/ dn (xa 00) — In (TQn7 Qn)/gn (.CU, TQn)}

1 =T+ Ts.

i X = 7 = -1 dQ’}l/2
(1+wn(TQn,Qn) gn(x,TQn)) (14+71.(00,@n) gn(z,00))

For T, Lemmas and imply 75 = o (n"1/2). For T1, the triangle inequality and (AII]) yield

_ T T -t I
n < |1 2% (o (2.T0,)] Ba, |on (#.T0,) 9a (v T0,)' | on (2. To,) dQy/*

+1Eq, [gn (2,600)] EQ, [gn (,60) gn (2,60)] " gu (x,00) + 347,
+ || Ea, lon (.60, @) g1 (2,00)) Ea, [on (2. 60) gn (,00)) " g (z,60) QK2

+

_ _ _ _ —1
EQn [Qn (x, TQn7 Qn) 9n (CC, TQn)] , EQn |:gn (CUa TQn) 9n (xu TQn),} 9n (xa 90) qulzﬂ

= T+ Tio + T1s.

Lemmas [A5] and imply that Tio = o(n_l/Q) and Tj3 = o(n_1/2). For Tip, expansions of
n (ac, TQn) around Tp,, = 6 yield

1

-1
_ E n[ z, T, z,To, /}
Tll S 2EQn [gn (xyTQn)]/ Q 9n ( Q )g” ( Q )_

A o (2.Tg,) 4@y
_EQn [gn (.’E7 ‘90) 9n (.’E7 ‘90) ]

+ _%EQn [gn (xaTQn)]/EQn [gn (x,@o) 9n (x700),]71 {gn (.CU,TQn) — n (x,@o)} dQ71’L/2

/

1, 99 (x,@) n-1 1/2
+ _itn TdQn -G EQn [gn (xa 90) 9n (xa 90) ] 9n (xa 90) dQn

1 -
+ |56 (27 = Eq, (90 (2.60) ga (2.60)] ") g (2. 60) dQ}?

= o (n_1/2> +o(tn),

where 6 is a point on the line joining Ay and TQR, and the equality follows from Lemmas [A5] (i) and
[A.6] (i).

Proof of (ii). Similar to the proof of Part (i) of this lemma.



Lemma A.4. Suppose that Assumption [31] hold. Then for each t € RP,

(3): 1By lgn (2, 00)]| = 0 (17/2), | Ep, [gn (2, 00)]| = O (n72), | Epy [gn (2,00) g (2,0,)) — @] =
o(1), and |Ep, [0gn (z,0,) /00" — G| =0 (1),

(ii): vy (On, Py) = arg maxyepm — [ mdpo exists for all n large enough, |y, (0, Po)| =
O (n_1/2), and sup,cy h" (00, Po) g (,6,) ‘ =o(1).

Proof of (i). Proof of the first statement. The same argument as (A4)) with Assumption B
(iii) yields the conclusion.

Proof of the second statement. Pick an arbitrary ¢t € RP. From the triangle inequality,

(A.12) [Epy [9n (2,00)]] < [Ep, [9 (2,00) I{z & Xn}]| +[Ep, [g (2,00)]]

By the same argument as (A4]) and Ep, [|g (z,6,)|"] < oo (from Assumption B1] (v)), the first term
of (A12) is o (n~Y/2). The second term of (AI2) satisfies

\Ep, [g (2. 62)]| < En, [sup \
0eN

g (x,0)
06’

71/2) ’

for all n large enough, where the inequality follows from a Taylor expansion around ¢ = 0 and

Assumption B1] (iii), and the equality follows from Assumption B.1] (v). Combining these results, the
conclusion is obtained.

Proof of the third statement. Pick an arbitrary ¢ € R?. From the triangle inequality,

‘Epo [gn (z,0) gn (z,0,) ] Q‘

|Ep, [gn (€,6n) gn (2,00)'] — Ep, [g (2,00) g (2,60)']| + | Ep, [9 (2, 6n) g (2,6,)'] — Q.

The first term is o (nfl/ 2) by the same argument as (A.4)) and the second term converges to zero by
the continuity of g (x, ) at 6.

Proof of the fourth statement. Similar to the proof of the third statement.

Proof of (ii). Pick an arbitrary ¢ € RP. Let I', = {y € R™: |y| < a,} with a positive sequence

an satisfying a,m,, — 0 and ann1/2 — 00. Observe that
neN ying

(A.13) sup "y/gn (z, 9){ <apmy, — 0.
vl R, 2€X,0€0
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Since R, (Py,0n,7) is twice continuously differentiable with respect to v and T', is compact, 5 =

arg max~er,, Ry (Po,0n, ) exists for each n € N. A Taylor expansion around 4 = 0 yields
gn (@, 6n) gn (2, en)/ ~

—1 : 3
1+ gn (z,0,))

Rn (P07‘9n70) S RTL (P07 0”7;?) = _1 + ;VEPQ [gn (:Cu 9”)] - ’?,EPO

IN

-1+ :)//EPO [gn (7,05)] — C:)/EPO [gn (z,0n) gn (z, Hn),] v

(A14) < —1+1311Ep, [9n (,62)] - C 131,

for all n large enough, where 7 is a point on the line joining 0 and 7, the second inequality follows from
(A13), and the last inequality follows from Lemma [A4] (i) and Assumption Bl (vi). Thus, Lemma
[A4] (i) implies

(A.15) C13| < |Ep [gn (2,00 = O (n72).

1/2 5 o0, 4 is an interior point of T',, and satisfies the first-order condition OR,, (Qy, 00,7) /0y =

From a,n
0 for all n large enough. Since Ry, (Qr,0p,7) is concave in ~ for all n large enough, ¥ = arg max,erm R, (P, On,7)
for all n large enough and the first statement is obtained. Thus, the second statement is obtained

from (AI5]). The third statement follows from (AI5]) and Assumption B3] (vii).

Lemma A.5. Suppose that Assumption[3 1] holds. Then for eachr > 0 and sequence Q,, € By (Po,r/v/n),

(D): |Eq, lgn (z,00)]| = O (n™/?), and |Eq, [gn (x,00) gn (x,600)'] — Q| = o (1),
(i1): v (fo, Qn) = arg maxyecgm — [ md@n exists for alln large enough, and |y, (6p, Qn)| =
O (n_1/2), and sup,cy h" (6o, Qn)/gn (ac,@o)‘ =o(1).

Proof of (i). Proof of the first statement. Pick any r» > 0 and sequence Q,, € By (Py,7/y/n).
We have

1EQ., [9n (x,00)]]

< ‘ [ 0 .00) 10Qu = a5} + |Ep, g 200
< '/gn (z,60) { @}/ - dPol/Q}Z‘ +2 ‘/gn (. 60) P> {dQ}/* - dPol/Q}‘ +o(n71?)
< mng + 2FEp, [|g (x,@o)ﬂ % +o0 <n71/2> =0 (n*1/2> ,

where the first and second inequalities follow from the triangle inequality and Lemma [A4] (i), the
third inequality follows from the Cauchy-Schwarz inequality and Q,, € By (P, r/+/n), and the equality
follows from Assumption B.1] (v) and (vii).
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Proof of the second statement. Pick arbitrary » > 0 and sequence Q,, € By (Py,r/y/n). From
the triangle inequality,

(A.16) |Eq,, [gn (%,60) gn (z,60)'] — Q|
< |Eq, [gn (x.600) gn (%,00)'] — Ep, [gn (%,00) gn (,60)']| + |Er, [9 (%,00) g (z,60) I{zx ¢ X,}]|.
The first term of the RHS of (A.16]) satisfies
|Eq, [gn (%,00) gn (2,00)'] — Ep, [gn (%,00) gn (z,600)'] |

2

2
< mis 428, [lg(@,00)'] <= = o(1)
— nn 0 b )

where the first inequality follows from the triangle inequality, the second inequality follows from the
Cauchy-Schwarz inequality and @, € By (Py,7/y/n), and the equality follows from Assumption [3.1]
(v) and (vii). The second term of (A.16]) satisfies

|Ep, [g (,60) g (z,00) T{x ¢ X,}]|

</|9(:c,90)g(:c,go)/‘uédp(])ﬁla </]I{;c¢ Xn}dp(])m

< (Bn [l @.00))) ™ (m 7 (g .00 T = o (1).

IN

for sufficiently small § > 0, where the first inequality follows from the Hoélder inequality, the second
inequality follows from the Markov inequality, and the equality follows from Assumption 3] (vii).
Proof of (ii). Similar to the proof of Lemma[A4] (ii). Repeat the same argument with R,, (Qp,6o,7)
instead of R, (Py,0n,7).

Lemma A.6. Suppose that Assumption[31 holds. Then for eachr > 0 and sequence Q,, € By (Po,7/v/n),
@+ [Eq, [90 (. Ta,)]| = 0 (n7V2), [Eq, [90 (. Ta.) gn (#.T0,)'] = €| = 0 (1), and
B (090 (¢ Ta,) /098] — G| = o 1),

(ii): (TQM Qn) = argmaxyerm — f m

Tn (TQn7 Qn)/ dn ('T7 TQn)

o (T Qn)| =

dQ,, exists for alln large enough,

O (n™Y2), and sup,c =o(1).

Proof of (i). Proof of the first statement. Pick any r > 0 and sequence @, € By (Fo,r//n).
Equ[9n(2/Ta, )]
V| Bqnlgn (270, )]

(A.17) sup |V gn (z,0)] < n"2m, — 0.
reX,0€0

. Since |§| = n~1/2,

Define 4 =
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Observe that
(A.18)
‘EQn [gn (x,TQn) 9n (x’TQn)/] ‘

2
< /sup lgn (50,9)|2 {dQ}/Q — dP01/2} + 2/sup lgn (50,9)|2dl’301/2 {in/Q - dP(]l/Q} + Ep, [sup |gn (x,9)|2}
[USC) [USC) 0cO

T2 T
LA o [sup 9 <x,e>\2] T B, [sup 9 (e, eﬂ < CEp, [sup 9, e)F] ,
n HcO vn 0cO HcO

for all n large enough, where the first inequality follows from the triangle inequality, the second in-
equality follows from the Cauchy-Schwarz inequality and @,, € By (Py,/+/n), and the last inequality

follows from Assumption Bl (v) and (vii). Thus, an expansion around 4 = 0 yields

gn (2,T0,) gn (2,Tg,)"
(1 +gn (2. Tq,))°

~1+n72|Eq, [gn (v.Ta.)]| - C7'Eq, |on (+.Ta,) g (+.Ta,)'| 3

—14+n 12 |EQn [gn (x,TQn)] ‘ — Cnfl,

Ry (@n:Tq.,7) = —1+7'Eq, [9n (2, Tq.)] —7'Eq,

AV

(A.19)

AV

for all n large enough, where  is a point on the line joining 0 and 7, the first inequality follows from
(A17), and the second inequality follows from 7' = n~! and (AIS8). From the duality of partially
finite programming (Borwein and Lewis (1993)), v, (Tg,,@x) and Ty, are written as v, (Tg,, Qn) =

arg maxyecrm Ry (Qn, 10,.,7) and To, = argmingeg Ry, (Qn, 0,7 (0, Qy)). Therefore, from (A1),

-1+ n~1/2 ‘EQn [gn (x,TQn)” —Cn~!

(A-QO) < Rn (Qna TQM:Y) < Rn (Qna TQn77n (TQn7 Qn)) < Rn (Qna 007 Tn (007 Qn)) .

By a similar argument to (AI4) combined with |7, (6, Q)| = O (n~Y/2) and |Eg, [g, (x,00)]] =
O (n=Y?) (by Lemma[A5), we have
(A.21)

Ri (Qns 00,7 (60, Qn)) < =1+ 7a (60, Qu)| |EqQ, [9n (,60)]] = C i (60, Qu)* = =1+ 0 (7).

From (A20) and (A:21]), the conclusion follows.

Proof of the second statement. Similar to the proof of the second statement of Lemma [AF (i).
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Proof of the third statement. Pick arbitrary r > 0 and sequence Q,, € By (Py,7/+/n). From the

triangle inequality;,

Bq. (000 (r.Ta,) [09') ~ G| < |Eq, [00n (v.Ta,) /00') ~ Ep, (090 (v.To,) /09

(A.22) + ‘EPO [JI {z ¢ X,} 0g (x,TQn) /80'] ‘ + |Ep0 [89 (x,TQn) /80'] — G‘ .
The first term of (A22]) satisfies

‘EQn [agn (.CU, TQn) /80’] B EPO [8g” (x’ TQn) /80/] ‘

< ‘/Qqn (v, Ta,) /00 {dQy/? - dpg/Q}Q‘ +2 '/85]” (v.Tq,) /00'ary’* {aQ)? - ary* |
< sup  |9gn (,0) /00| r + 2Ep, [sup |Ogn (x,0) /80'!2] S o(1),
TEXn 0N n beN vn

where the first inequality follows from the triangle inequality, the second inequality follows from the
Cauchy-Schwarz inequality, and the equality follows from Assumption B1] (v) and (vii). The second

term of (A22]) is o(1) by the same argument as (A4). The third term of (A22]) is o(1) by the
continuity of dg (z,6) /00" at 6y and Lemma [AT] (ii). Therefore, the conclusion is obtained.

Proof of (ii). Similar to the proof of Lemmal[Al(ii). Repeat the same argument with R,, (Qn, Tg,,,7)
instead of R, (Py,0n,7).

Lemma A.7. Suppose that Assumption [ holds. Then for each sequence Q, € By (Py,r/+/n) and

r >0, Tpn LN 0y under Q.
Proof. Similar to the proof of Lemma [A]] (i).

Lemma A.8. Suppose that Assumption [31 holds . Then for each r > 0 and sequence @, €

By (Po,r/v/n),
Vvn (Tp, — b)) = —/nx ! /AndPn +o0p (1) under Qn,
Vvn (Tp, — Tg,) 4 N(0,=7Y)  under Q.

Proof. The proof of the first statement is similar to that of Lemma[A.2] (replace @Q,, with P, and use

Lemmas and [AT0] instead of Lemmas [A5] and [A6]). For the second statement, Lemma and
the first statement imply

n

Vi (T, —To,) = —E—IG’Q*% S {90 (@1,00) — Eq, gn (2,00)]} + 0, (1),
=1
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under @Q,. Thus, it is sufficient to check that we can apply a central limit theorem to the triangular

array {gn (i,00)}1<j<pn,- Observe that

Eq, [lgn (2,00) "]

2
~ [ o ($,90)|2+6 {a0if? ~arP} v 2 [ lgu (0,00 4R {dQY? — aP}} + En, [l (2. 00

r €
< w2 T ot Ey, [lo (o 00)P] B |lo (@ 0] < oo,

for all n large enough, where the first inequality follows from the Cauchy-Schwarz inequality, and the

second inequality follows from Assumption B.1] (v) and (vii). Therefore, the conclusion is obtained.

Lemma A.9. Suppose that Assumption[Z 1 holds. Then for eachr > 0 and sequence Q,, € By (Py,r/\/n),
the followings hold under Q,:

(): |Ep, [gn (z,60)]| = O, (n*1/2) |Epn [gn (x,600) gn (z,00) ] Q‘ =o0p (1),

(ii): v (6o, Py) = arg maxegm — [ mdP exists a.s. for alln large enough, |y, (6o, Py)| =

O, (nfl/Q), and sup,cy hn 00, P) g (,60) ‘ =o0p (1).
Proof of (i). Proof of the first statement. From the triangle inequality,

[Ep, [gn (2, 00)]l < [Ep, [gn (2,00)] — Eq, [9n (x,600)]] + [Eq, [9n (x,60)]| -

The first term is O, (nil/ 2) by the central limit theorem for the triangular array {g, (x;, 00)}1§i§n7n.
The second term is O (n~'/2) by Lemma [AF (i).

Proof of the second statement. From the triangle inequality,
|Ep, [gn (x,00) gn (x,60) — Q]|
|Ep, [gn (2,60) gn (2,60)'] — Eq, [9n (,00) gn (2,00)']| + | Eq,, [gn (2,600) gn (z,60)'] — Q.

From a law of large numbers, the first term is o, (1). From Lemma [AH (i), the second term is o (1).

Proof of (ii). Similar to the proof of Lemma[A7] (ii) except using Lemma[A0] (i) instead of Lemma
A (i).

Lemma A.10. Suppose that Assumption [ holds. Then for each r > 0 and sequence Q, €
By (Po,r//n), the followings hold under Qy,:

(): |Ep, [gn (2. Tp,)]| = Op (n71/?), | Ep, [gn (,Tp,) gn (=, Tp,) ] Q‘ n=12), and
|Ep, [0gn (. Tp,) /00'] — G| = 0, (1),
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(ii): vn (TPM Pn) = arg max,egm — [ WdPn exists a.s. for alln large enough, hn (TpnPn)‘ =

Tn (TPnapn)/gn (.Q?,Tpn) = Op (1)

Op (nfl/Q), and sup,cy

Proof of (i). Similar to the proof of Lemma [A.0 (i).
Proof of (ii). Similar to the proof of Lemma (ii).
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